МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ОТДЕЛЕНИЕ ФИЗИЧЕСКИХ НАУК РОССИЙСКОЙ АКАДЕМИИ НАУК ДАГЕСТАНСКИЙ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР РАН ИНСТИТУТ ФИЗИКИ ИМ. Х.И. АМИРХАНОВА ДФИЦ РАН ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАЗОВЫЕ ПЕРЕХОДЫ, КРИТИЧЕСКИЕ И НЕЛИНЕЙНЫЕ ЯВЛЕНИЯ В КОНДЕНСИРОВАННЫХ СРЕДАХ

Сборник трудов международной конференции, посвященной 80-летию Дагестанского федерального исследовательского центра РАН

Махачкала, Республика Дагестан, Россия 26-31 октября 2025 г.

ФАЗОВЫЕ ПЕРЕХОДЫ, КРИТИЧЕСКИЕ И НЕЛИНЕЙНЫЕ ЯВЛЕНИЯ В КОНДЕНСИРОВАННЫХ СРЕДАХ

Сборник трудов международной конференции

В настоящий сборник включены материалы, представленные на международную конференцию "Фазовые переходы, критические и нелинейные явления в конденсированных средах".

Конференция проводится Институтом физики Дагестанского федерального исследовательского центра Российской академии наук, Дагестанским государственным университетом, Челябинским государственным университетом.

Материалы воспроизведены с авторских оригиналов, в связи с чем Оргкомитет конференции не несет ответственности за допущенные опечатки и стилистические погрешности.

© Институт физики Дагестанского ФИЦ РАН, 2025.

УДК 537.61 ББК 22.334 Ф16

ISBN 978-5-00212-909-6

DOI: 10.33580/9785002129096

ОРГАНИЗАЦИОННЫЙ КОМИТЕТ

академик РАН Муртазаев А.К., Махачкала, Россия Сопредседатели:

чл.-корр. РАН Камилов И.К., Махачкала, Россия

Ашурбеков Н.А., Махачкала, Россия Зам. председателя:

Каллаев С.Н., Махачкала, Россия

Секретарь: Абакарова Н.С., Махачкала, Россия

Члены оргкомитета

академик РАН Асхабов А.М., Сыктывкар, Россия

академик РАН Бражкин В.В., Троицк, Россия

академик РАН Кведер В.В., Черноголовка, Россия

академик РАН Садовский М.В., Екатеринбург, Россия

чл.-корр. РАН Арсеев П.И., Москва, Россия

чл.-корр. РАН Борисов А.Б., Екатеринбург, Россия

чл.-корр. РАН Хохлов Д.Р., Москва, Россия

Абдулагатов И.М., Махачкала, Россия

Бучельников В.Д., Челябинск, Россия

Бычков И.В., Челябинск, Россия

Вахитов Р.М., Уфа, Россия

Воронцов-Вельяминов П.Н., Санкт-Петербург, Россия

Звездин А.К., Москва, Россия

Кугель К.И., Москва, Россия

Рабаданов М.Х., Махачкала, Россия

Рыжов В.Н., Троицк, Россия

Таскаев С.В., Челябинск, Россия

Терёшина И.С., Москва, Россия

Локальный и программный оргкомитет

академик РАН Муртазаев А.К. – председатель

Хизриев К.Ш. – зам. председателя

Абакарова Н.С. – секретарь

Алиев А.М.

Бабаев А.Б.

Балиев М.К.

Ибаев Ж.Г.

Курбанова Д.Р.

Магомедов М.А.

Муртазаев К.Ш.

Мутайламов В.А.

Рамазанов М.-Ш.К.

Сайпулаева Л.А.

Содержание

Пленарные доклады	5
Секция Б2. Моделирование фазовых переходов и критических явлений	24
Секция В2. Материалы с памятью формы, магнитокалорические материалы, мультиферроики	70
Секция А3. Общие вопросы физики фазовых переходов и критических явлений	144
Секция Б3. Топологические материалы, магнитотранспорт и спинтроника	205
Секция ВЗ. Нелинейные явления и хаос в конденсированных средах	230
Авторский список	284

Пленарные доклады

Взаимодействующие структурные и магнитные фазовые переходы в твердых телах

Коледов В.¹, Бучельников В.², Соколовский В.², Таскаев С.², Загребин М.², Фонгратовски С.¹, Ветошко П.¹, Кузнецов Д.¹, Жданов С.¹, Поваренцев В.¹, Щеглов В.¹, Метлов Л.³, Головчан А.³, Ковалев О.³, Жданов С.¹, Поваренцев В.¹, Коледов. А.¹, Суслов Д.¹, Морозов Е.¹, Неженцев А.¹, Каманцев А.¹, Маширов А.¹, Прокунин А.¹, Дильмиева Э.¹, Калашников В.¹, Несоленов А.¹, Пойманов В.^{4,5}, Ховайло В.⁶

¹Институт радиотехники и электроники им. В.А.Котельникова РАН, г. Москва ²Челябинский государственный университет, г. Челябинск ³ФГБНУ Донецкий физико-технический институт им. А.А. Галкина, г. Донецк ⁴МГТУ им. Н.Э. Баумана, г. Москва, ⁵ИСПМ им. Н.С. Ениколопова РАН, г. Москва ⁶НИТУ МИСиС, г. Москва е-mail: victor koledov@mail.ru

В пионерских работах В.Г.Шаврова и соавторов [1], посвященных теоретическому изучению фазовых переходов (ФП) в сплавах Гейслера системы Ni₂MnX не только объяснены яркие эффекты изменения свойств этих материалов во внешних полях, такие, как гигантский магнитокалорический эффект (МКЭ), магнитоуправляемый эффект памяти формы (ЭПФ) и др., но также поставлена фундаментальная проблема взаимного влияния структурных и магнитных ФП, которое имеет место при наличии связи упругой и магнитной подсистем в твердом теле.

Цель доклада — дать обзор работ в этой области, начиная с основополагающих теоретических работ, в которых найдены особенности спектра волновых возбуждений в кристалле в условиях взаимодействия упругой и магнитной подсистем (магнитоупругая щель), затем рассмотреть теоретические и экспериментальные работы по объяснению свойств твердотельных соединений со связанными структурными и магнитными $\Phi\Pi$, вблизи которых наблюдаются рекордные значения МКЭ, и магнитуправляемый $\Pi\Phi$, а также представить новые результаты, обозначить нерешённые задачи и наметить пути их решения

В материалах, в которых протекают магнитный и структурный ФП, вследствие взаимодействия подсистем могут иметь место эффекты Взаимодействие ФП может приводить влияния $\Phi\Pi$. взаимного Например, функциональных свойств. максимальной величине сплавах Гейслера Ni₂MnGa, интерметаллических вследствие взаимодействия упругой и магнитной подсистем, наблюдается сильное взаимное влияние магнитного ФП 2-го рода (точка Кюри) и термоупругого результате, подбирая концентрации мартенситного перехода. компонентов в составе интерметаллида, можно добиться сближения и слияния структурного мартенситного и магнитного ФП в единый магнетоструктурный ФП 1-го рода. В [1] это явление трактуется в раках теории ФП Ландау. При этом зависимости температур ФП от состава нестехиометрического интерметаллида удалось объяснить, представив константы в разложении свободной энергии по параметрам прядка: структурному и магнитному, зависящими от концентрации элементов в сплаве. Слияние ФП может приводить к усилению эффектов и к повышению их чувствительности к полю, как это, например, наблюдается при магнитоструктурном ФП в соединении MnAs, в котором гигантский МКЭ в изотермическом режиме имеет рекордное для твердотельных материалов значение [2]. В дальнейшем, ФП в сплавах Гейслера изучались экспериментально и теоретически, не только в рамках теории Ландау, но и с помощью первопринципных расчетов, метода Монте-Карло и др. [3-5].

Для описания зависимостей структурного и магнитного $\Phi\Pi$ в сплавах Гейслера от состава и внешнего магнитного поля можно воспользоваться функцией свободной энергии Гельмгольца в разложении свободной энергии по параметрам порядка деформации (ϵ) и намагниченности (M):

$$F(\varepsilon, M) = \frac{1}{2}\alpha_0(T - T_M)\varepsilon^2 + \frac{1}{3}b\varepsilon^3 + \frac{1}{4}c\varepsilon^4 + \frac{1}{2}\alpha_0(T - T_c)M^2 + \frac{1}{4}\beta M^4 + \frac{1}{2}B_0\varepsilon^2 M^2 - MH.$$
 (1)

Поиск глобального минимума функции F проводился численным методом, на множестве допустимых значений параметров парада ε и M. Для оценок ниже приняты следующие значения коэффициентов и параметров: α =1; T_c =330 K; β =3*10⁻⁸; H=0–10 000 000 [A/M]; α =1,7*10¹²; T_M =300 K; β =1,7*10¹⁵; c =0,8*10¹⁷; σ =0 Па; B_0 – магнитоупругая константа.

В рамках этой простой модели удается качественно объяснить основные эффекты влияния поля и состава на свойства сплавов Гейслера. Например, учет знака магнитоупругой константы B_0 позволяет объяснить различие поведения ФП и знак МКЭ в сплавах типа сплава Ni-Mn-In (обратный МКЭ) и Ni-Mn-Ga (прямой МКЭ). Примеры результатов численных расчетов и сравнения с экспериментом показаны на Рис. 1 и 2.

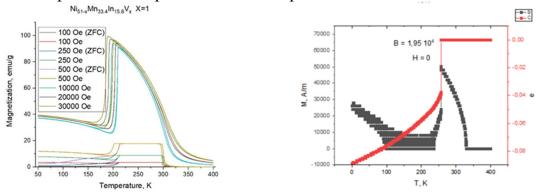


Рис. 1. Магнитный и структурный переход в Ni-Mn-In. Эксперимент (слева), численный расчет по модели (1): $B = 1,95 \, 10^4 \, \text{Дж}$

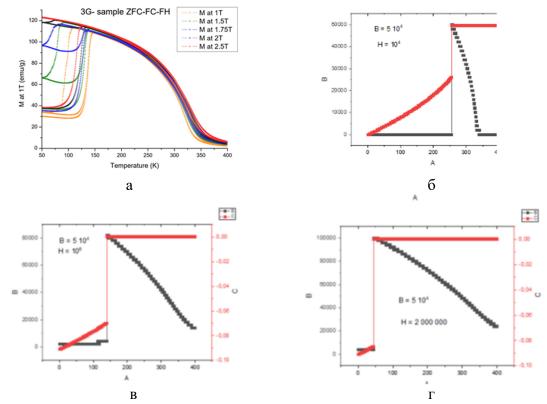


Рис. 2. Влияние внешнего поля на структурный переход в сплаве Ni-Mn-In. (а) эксперимент. (б-г) численный расчет для $B = 5 \cdot 10^4$, при $H = 10^4 \text{ A/m}$, 10^5 A/m , 10^6 A/m .

Таким образом, в докладе отмечаются успехи теории в качественном описании взаимодействующих ФП в функциональных сплавах, в частности, удовлетворительно описаны знак и величина зависимости температуры структурного ФП от магнитного поля. Знак МКЭ при магнитоструктурном ФП определяется знаком магнитоупругой константы для данного сплава. Значительного улучшения согласия теории и эксперимента удалось достичь в [6], за счет привлечения к термодинамическому описанию методов теории размытых ФП. Представляет большой интерес применение методов ультразвуковой и опто-акустической диагностики ФП для подтверждения роли магнитоупругой связи в формировании фазовых диаграмм. Развитие теоретических методов должно приблизить синтез новых материалов с высокой чувствительностью ФП, МКЭ и ЭПФ к магнитному полю, необходимой для практики. Для этих целей целесообразно применение методов искусственного интеллекта.

Работа выполнена в рамках госзадания ИРЭ им. В.А.Котельникова РАН (FFWZ-2024-0007).

- [1] Vasil'ev, A. N., Bozhko, A. D. et al. (1999). Phys. Rev. B, 59(2), 1113.
- [2] Koshkid'ko, Y. S., Valkov V.I. et al. (2019). Journ. All. Comp. 798, 810.
- [3] Buchelnikov V., Taskarv S. et al. Mat. Sc. Forum (2008) 583, 131.
- [4] Sokolovskiy V.V. et al. Phys. Rev. B (2015) 91, 220409.
- [5] V.D. Buchelnikova, M.A. Zagrebina, et al. JMMM (2008) 320, e175.
- [6] В.И. Вальков, А.В. Головчан и др. (2025) ФТТ том 67, вып. 4, С. 653.

Термоэлектрические свойства сплавов Гейслера Ba₂AuBi и Sr₂AuBi

Бучельников В.Д., Фролова Д.А., Соколовский В.В. Челябинский государственный университет, Челябинск, Россия e-mail: buche@csu.ru

Основная проблема применения термоэлектрических (ТЭ) материалов связана с их эффективностью. Термоэлектрическая добротность zT большинства ТЭ-материалов при 300 К невелика [1]. zT для монокристалла SnSe составляет 2,6 при 923 К [2]. При 300 К zT монокристалла SnSe равна 0,12. Поэтому существует проблема поиска ТЭ-материалов с большим zT при 300 К. Для кристалла SnSe zT при 300 К можно увеличить до 1,2 путем приложения давления [3]. Полугеслейровские сплавы также перспективны для применения в ТЭ [4]. Однако максимальное значение zT 1,5 полугейслеровских сплавов составляет около при высоких температурах. При 300 К гТ полугейслеровских сплавов мала. Полные сплавы Гейслера также являются перспективными ТЭ-материалами. Однако теплопроводность решетки, приводящая высокая К ограниченной эффективности ТЭ, все еще препятствует их широкому применению в практических приложениях. Недавно были предсказаны новые полные сплавы Гейслера с низкой теплопроводностью решетки [5-7].

В данной работе проводится обзор последних исследований полных сплавов Гейслера X_2Y Ві (X = Li, K, Rb, Sr, Ba, Y = Sr, Au) с точки зрения их ТЭ-свойств. Затем в рамках DFT-расчетов и кода BoltzTraP2 исследуются ТЭ-свойства полупроводниковых сплавов Ba₂AuBi и Sr₂AuBi.

Результаты расчета термоэлектрической добротности для сплава Ba₂AuBi представлены на рисунках 1 и 2.

На рисунке 1 показана зависимость zT от концентрации носителей (n- электронов и p- дырок) при температуре 300 К.

Рис. 1. Зависимость zT от концентрации носителей

Видно, что максимальное значение добротности достигается в диапазоне уровня допирования сплава от 10^{18} до 10^{19} см⁻³ и составляет около 0.9 для обоих типов носителей заряда.

На рисунке 2 представлена температурная зависимость добротности zT при оптимальном уровне допирования сплава при температуре 300 К.

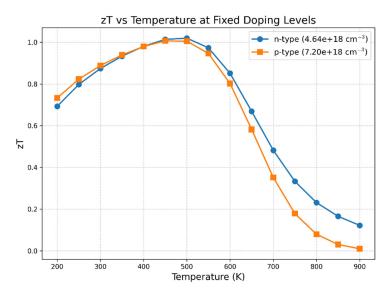


Рис. 2. Зависимость добротности сплава Ba2AuBi от температуры

Из рисунка 2 следует, что максимальное значение добротности достигается при температуре 500 К и составляет 1. Аналогичные результаты получены и для других указанных выше полных сплавов Гейслера.

Таким образом сплав Ba₂AuBi и другие, рассмотренные в данной работе полные сплавы Гейслера, являются перспективными при использовании в термоэлектрических устройствах.

Работа выполнена при поддержке гранта РНФ № 24-12-20016.

- [1] Liuyijie Huang, et al. Thermal Sci. and Eng. Progress 45, 102064 (2023).
- [2] L.-D. Zhao, et al. Nature 508, 373 (2014).
- [3] Jinlong Ma, et al.: Int. J. of Heat and Mass Transfer 221, 125063 (2024).
- [4] G Rogl, PF Rogl: Crystals 13, 1152 (2023).
- [5] Jiangang He, et al.: Phys. Rev. Letters 117, 046602 (2016).
- [6] Shuming Zeng, et al.: Int. J. of Heat and Mass Transfer 217, 124628 (2023).
- [7] Qian Guo, et al.: J. Appl. Phys. 136, 105102 (2024).

Влияние магнитных примесей на электронные характеристики дираковского полуметалла Cd₃As₂

Кулатов Э.Т.¹, Успенский Ю.А.², <u>Кугель К.И.^{3,4}</u>

¹ Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия e-mail: kulatov@td.lpi.ru

² Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия e-mail: uspenski@lpi.ru

³ Институт теоретической и прикладной электродинамики РАН, 125412 Москва, Россия

⁴ Национальный исследовательский университет Высшая школа экономики, 101000 Москва, Россия e-mail: klimkugel@gmail.com

Теоретические исследования предсказывают, что магнитное легирование дираковского полуметалла расщепляет конусы Дирака (КД) на конусы Вейля (КВ), имеющие левую и правую киральность. Наличие киральности вносит в электродинамику и транспортные свойства вейлевских полуметаллов много своеобразия и делает их материалами очень интересными для приложений. Однако в реальных материалах изменения в спектре, вызванные магнитным легированием, зачастую имеют сложный характер и требуют тщательного изучения. Экспериментальные исследования, выполненные для дираковского полуметалла Cd₃As₂, легированного атомами переходных 3d-металлов показали, что проявления топологических свойств (ненулевая фаза Берри и аномально малая эффективная масса носителей заряда) не исчезают при легировании, а сохраняются вплоть до концентраций 3d-элементов в несколько процентов. Но сам характер изменений спектра и условия сохранения в нем конусов Вейля остаются пока неизвестными.

Чтобы внести ясность в эти вопросы, мы провели первопринципные расчёты электронной структуры сплавов ($Cd_{0.96}M_{0.04}$) $_3As_2$ с M=Cr, Mn, Fe и оценили изменения их транспортных свойств, вызванные легированием. Более точно, для ферромагнитного (ΦM) и антиферромагнитного (ΦM) упорядочений спина были рассчитаны: зонная структура и плотность электронных состояний, скорость электронов на уровне Φ ерми (E_F) и поверхность Φ ерми, а также плазменная частота Друде, играющая важную роль в электронном транспорте. Была также изучена стабильность сплавов по отношению к перестройке спиновой структуры и к пространственному перераспределению магнитных атомов.

Выполненные расчёты показали, что введение магнитных атомов в Cd_3As_2 не сводится к спиновому расщеплению КД, а вызывает сложное и неоднозначное изменение электронного спектра вблизи E_F . Важную роль в формировании спектра $(Cd_{1-x}M_x)_3As_2$ играет гибридизация 3d-орбиталей атомов M с электронными состояниями Cd_3As_2 , которая сильно

деформирует или даже разрушает КД. Чтобы этого не произошло, КД и $E_{\rm F}$ должны попасть в энергетическое "окно", где 3d-состояния атомов М почти полностью отсутствуют.

В случае ФМ упорядочения спинов картина образования таких окон наиболее прозрачная. Окно, свободное от состояний М $3d\downarrow$, гарантированно существует вблизи $E_{\rm F}$, если вся М $3d\downarrow$ -зона не заполнена и лежит значительно выше $E_{\rm F}$. Для существования же "окна" для электронов со спином вверх зона М $3d\uparrow$ должна быть полностью заполнена и располагаться намного ниже $E_{\rm F}$. Если же М 3d-зона со спином вверх или вниз заполнена лишь частично, то её орбитали будут присутствовать в окрестности $E_{\rm F}$ и сильно смешиваться с состояниями конуса Вейля.

При АФМ упорядочении спинов возможностей для формирования "окон" существенно меньше. В этом случае магнитные моменты атомов М направлены как вверх, так и вниз, из-за чего "окна" в АФМ спектре зависят от "окон" для обоих направлений спина.

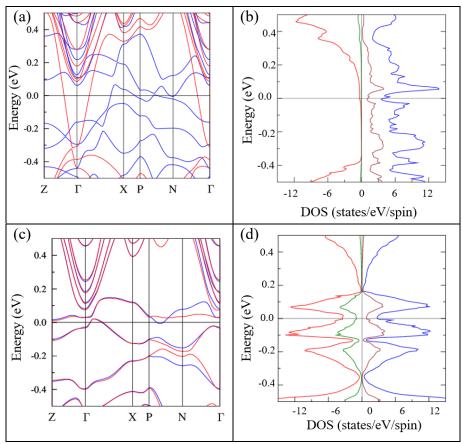


Рис. 1. Электронная структура сплава ($Cd_{0.96}Cr_{0.04}$) $_3As_2$): (а) зонная структура и (b) плотность состояний (DOS) для ФМ сплава, (c) зонная структура и (d) плотность состояний для АФМ сплава. На панелях (a–d) синие и красные кривые отвечают законам дисперсии и полным плотностям состояний соответственно для состояний со спином вверх и вниз. Коричневые и зелёные кривые на панелях (b) и (d) отвечают парциальным плотностям состояний хрома со спином вверх и вниз, соответственно

В изученных нами сплавах $(Cd_{1-x}M_x)_3As_2$ все эти варианты изменения спектра имеют место. В частности, $KB\downarrow$ сохраняется в ФМ сплавах $(Cd_{1-x}Cr_x)_3As_2$ (рис. 1) и $(Cd_{1-x}Mn_x)_3As_2$, а $KB\uparrow$ – в ФМ сплавах $(Cd_{1-x}Mn_x)_3As_2$ и $(Cd_{1-x}Fex)_3As_2$ (в двух последних сплавах $KB\uparrow$ смещён на +0.05 эВ выше E_F за счёт гибридизации с $3d\uparrow$ -зоной).

Наличие в окрестности $E_{\rm F}$ энергетических окон, свободных от 3d-состояний атомов M, не только создаёт благоприятные условия для существования дираковского спектра, но и резко снижает вклад в остаточное сопротивление, обусловленный рассеянием электронов на магнитных атомах. По этой причине КД, если он сохраняется в спектре, вносит доминирующий вклад в транспортные свойства сплавов ($Cd_{1-x}M_x$) $_3As_2$ при температуре $T \to 0$, что хорошо согласуется с данными магнитотранспортных измерений.

Выявленные закономерности формирования электронного спектра и транспортных характеристик магнитных сплавов ($Cd_{1-x}M_x$)₃ As_2 показывают, что топологические свойства этих материалов могут сохраняться при многих вариантах выбора М среди элементов 3d-ряда. Понимание этих закономерностей повысит эффективность исследований по улучшению топологических характеристик сплавов ($Cd_{1-x}M_x$) $3As_2$ за счёт оптимизации концентрации x, ко-легирования, формирования микроструктуры и других факторов.

Часть результатов работы изложена в статьях [1, 2].

- [1] E.T. Kulatov, Yu.A. Uspenskii, K.I. Kugel, J. Phys. Chem. Solids **194**, 112215 (2024).
- [2] Э.Т. Кулатов, Ю.А. Успенский, К.И. Кугель, Письма в ЖЭТФ **121**, 771 (2025).

Переход в нематическое состояние и необычная сверхпроводимость в ферропниктидах

<u>Коршунов М.М.</u>¹, Тогушова Ю.Н.²

¹ Институт физики им. Л.В. Киренского СО РАН, ФИЦ КНЦ СО РАН, г. Красноярск, Россия e-mail: mkor@iph.krasn.ru

² Сибирский федеральный университет, г. Красноярск, Россия e-mail: ytogushova@sfu-kras.ru

В сложных системах нередко возникает сочетание нескольких конкурирующих или сосуществующих дальних порядков разной природы. К таким системам относятся ферропниктиды, многоорбитальные эффекты в которых приводят к возникновению необычной сверхпроводимости [1,2]. Параметр порядка, имеющий противоположные знаки на разных листах поверхности Ферми и являющийся вариантом расширенной s-симметрии, получил название состояние s_{\pm} . Многообразие экспериментальных данных по сверхпроводящему состоянию можно объяснить в рамках спинфлуктуационного механизма куперовского спаривания [3]. Помимо данных по спин-резонансному пику [4], обнаруженному в неупругом рассеянии нейтронов [5,6], спиновый экситон, характерный для состояния s_{\pm} , наблюдался и в спектрах Андреевского отражения [7].

Экспериментально обнаруженная разница в сопротивлении вдоль

перпендикулярных взаимно направлений в плоскости железа тетрагональной фазе свидетельствует о возникновении электронного нематического порядка [9]. Нами описание влияния нематического порядка формирование на сверхпроводящего состояния проводилось на основе пятиорбитальной модели соединений железа с локальным (хаббардовским) кулоновским взаимодействием. Вычисленный в рамках теории среднего поля нематический параметр порядка симметрии B_{2g} зависит ОТ коэффициента нематического взаимодействия V_{nem} (Рис. 1) и меняется скачком при его

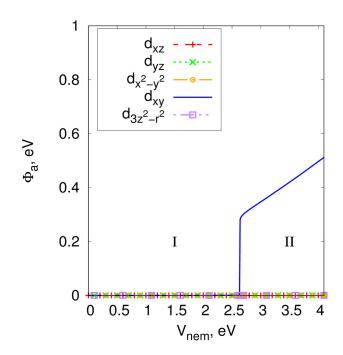


Рис. 1 Зависимость компонент нематического параметра порядка Φ_a для орбитали a от коэффициента V_{nem} .

увеличении. Нарушение симметрии поверхности Ферми приводит к

нарушению симметрии с C_4 до C_2 в зависимости спиновой восприимчивости от волнового вектора **q**. В рамках спин-флуктуационной теории сверхпроводящего спаривания [2] это приводит к тому, что в нематической фазе главное решение имеет структуру $s_{\pi\pm}$ типа и большую величину критической температуры T_c перехода в сверхпроводящую фазу, чем обычные в случае отсутствия нематичности состояния s_{\pm} и $d_{x^2-y^2}$ типов [10].

- [1] P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin, Rep. Progr. Phys. **74**, 124508 (2011).
- [2] М.М. Коршунов, УФН **184**, 882 (2014).
- [3] S. Maiti, M.M. Korshunov, T.A. Maier, P.J. Hirschfeld, A.V. Chubukov, Phys. Rev. Lett. **107**, 147002 (2011).
- [4] M.M. Korshunov, I. Eremin, Phys. Rev. B 78, 140509(R) (2008).
- [5] M.D. Lumsden, A.D. Christianson, J. Phys.: Cond. Mat. **22**, 203203 (2010).
- [6] D. Inosov, C.R. Physique **17**, 60 (2016).
- [7] M.M. Korshunov, S.A. Kuzmichev, T.E. Kuzmicheva, Materials **15**, 6120 (2022).
- [8] J.-H. Chu et al., Science **329**, 824 (2010).
- [9] R.M. Fernandes et al., Phys. Rev. B **85**, 024534 (2012).
- [10] М.М. Коршунов, Ю.Н. Тогушова, Письма в ЖЭТФ 119, 302 (2024).

Фазовые переходы в перфорированных магнитоэлектрических плёнках под действием упругих напряжений

<u>Шарафуллин И.Ф.</u>, Нугуманов А.Г., Абдрахманов Д.И. Уфимский университет науки и технологий, Уфа, Россия e-mail: sharafullinif@yandex.ru

Изучение неоднородных спиновых структур, такие как магнитные вихри или скирмионы в пленках с магнитным или ферроэлектричским дальним порядком или систем, сочетающих в себе оба типа упорядочения, стали центральными направлениями физики конденсированного состояния [1, 2]. Разработка контролируемого метода зарождения и эффективного переключения состояний топологически защищенных спиновых вихрей или фазы скирмиона является актуальной задачей спинтроники. Скирмионы и даже фаза решетки скирмиона могут зарождаться при наличии естественных дефектов материала, а дефекты также могут служить центром закрепления или пиннинга скирмионов [3, 4, 5], помимо этого наличие упругой деформации может привести к разрушению или формированию скирмионой фазы [6, 7].

В данной работе рассматривается модель тонкой магнитоэлектрической пленки, в которой скирмионные и вихреподобные структуры стабилизируются ферромагнитным обменом, взаимодействием Дзялошинского-Мория, внешним магнитным полем, магнитоэлектрическим взаимодействием. Гамильтониан рассматриваемой системы имеет следующий вид

$$H = H_{fm} + H_{fe} + H_{int}$$

Здесь мы предполагаем, что H_{fm} — характеризует гамильтониан ферромагнитной подсистемы с взаимодействием Дзялошинского-Мория, в которой, обменное ферромагнитное взаимодействие является функцией зависящей от расстояния между узлами решетки, таким образом, моделируется упругое растяжение или сжатие. H_{fe} — определяет взаимодействие поляризаций в ферроэлектрической подрешетки со структурным дефектом, H_{int} — определяет интерфейсное магнитоэлектрическое взаимодействие и вклад внешнего магнитного поля.

В работе рассматривается основное состояние, полученное методом наискорейшего спуска и температурная устойчивость скирмионной фазы с помощью Монте-Карло моделирования, в зависимости от размера структурного дефекта и величины упругой деформации.

Исследование выполнено за счет гранта Российского научного фонда (проект № 24-29-00702)

[1] D. I. Khomskii, Journal of Magnetism and Magnetic Materials, 306, 1-8, (2006).

- [2] Ge, Y., Rothörl, J., Brems, M. A., Kerber, N., Gruber, R., Dohi, T., & Virnau, P, Communications Physics, 6(1), 30, (2023).
- [3] Fallon, K., Hughes, S., Zeissler, K., Legrand, W., Ajejas, F., Maccariello, D., ...& McVitie, S., 16(13), 1907450, (2020).
- [4] Gong, X., Jing, K. Y., Lu, J., & Wang, X. R., Physical Review B, 105(9), 094437, (2022).
- [5] Hanneken, C., Kubetzka, A., Von Bergmann, K., & Wiesendanger, R., New Journal of Physics, 18(5), 055009, (2016).
- [6] Г.С. Дедов, А.О. Шориков, Письма в ЖЭТФ, 119(9), 684-691, (2024).
- [7] Бухараев, А. А., Звездин, А. К., Пятаков, А. П., & Фетисов, Ю. К., Успехи физических наук, 188(12), 1288-1330, (2018).

Обратный магнитокалорический эффект и фазовое расслоение в итинерантных ферромагнитных металлах в присутствии гигантской особенности ван Хова

<u>Некрасов И.А.</u> Институт электрофизики УрО РАН, Екатеринбург, Россия

Ферри- и антиферромагнитное упорядочение в перовскитах

<u>Ирхин В.Ю.</u> 1 , Комлева Е.В., Темников Ф.В., Ушаков А.В., Игнатенко А.Н., Стрельцов С.В.

Институт физики металлов УрО РАН, Екатеринбург, Россия ¹e-mail: Valentin.Irkhin@imp.uran.ru

Как и «обычные» перовскиты со структурой ABO_3 , четверные перовскиты демонстрируют ряд интересных физических явлений, связанных с их магнитными и электрическими свойствами. Например, соединения (Ca/La/Bi) $Cu_3Mn_4O_{12}$ демонстрируют высокое магнитосопротивление, а $CaCu_3Ti_4O_{12}$ обладает огромной диэлектрической постоянной и является перспективным пьезоэлектрическим материалом.

В ряду $RCu_3Mn_4O_{12}$, где R – редкоземельный металл, а также в CaCu₃Cr₂Re₂O₁₂ наблюдается ферримагнетизм с относительно высокими критическими температурами. Другой класс четверных перовскитов, характеризующихся высокими температурами ферримагнитного перехода, — это ACu₃Fe₂Re₂O₁₂. Эти системы обладают высокими значениями электронной теплоемкости, большими магнитными моментами упорядоченной фазе и высокими температурами Кюри [1,2]. Более того, как предполагается на основании расчетов из первых принципов, некоторые из полуметаллическими ферро- $(\Pi M\Phi)$ являются или, точнее, них ферримагнетиками.

Будучи типичными коллективизированными сильными ферромагнетиками, ПМФ обладают в одном из спиновых каналов энергетической щелью, которая может иметь различную природу, так что их магнитный момент стремится к максимально возможному значению. В промежуточное они занимают положение гейзенберговскими и обычными коллективизированными магнетиками. Щель может возникать либо из-за гибридизации, либо из-за расщепления Хаббарда, как в сильно коррелированных системах. T_C в соединениях $ACu_3Fe_2Re_2O_{12}$.достигают высоких значений и варьируется в широком диапазоне 170-710 К в зависимости от катиона A.

Нами были проведены расчеты обменных взаимодействий для ряда четверных перовскитов $A\mathrm{Cu}_3\mathrm{Fe}_2\mathrm{Re}_2\mathrm{O}_{12}$. В рамках приближения среднего поля с учетом поправок в методе поля реакции Онзагера, а также классического метода Монте Карло нами были проведены расчеты точек Кюри. Получается хорошее согласие с экспериментальными данными, за исключением случая $A=\mathrm{Cu}$, когда возникают сильные корреляционные эффекты, приводящие к частичному подавлению магнитного момнета и разрушению ПМФ состояния [1].

В антиферромагнитном перовските CaMnO₃ температура Нееля T_N составляет 125 K, а парамагнитная температура Кюри составляет – 500 K и

велика по абсолютному значению. В недавно синтезированной фазе соединения $HgMnO_3$ со структурой перовскита была экспериментально получена низкая температура Нееля $T_N = 60$ K, а парамагнитная температура Кюри равна -153 K [3].

На рисунке представлены вычисления T_N классическим методом Монте Карло и в рамках приближения Тябликова для параметров обменных взаимодействий, рассчитанных в HgMnO₃ из первых принципов. При этом атомы марганца образуют простую кубическую решетку, а понижение T_N обусловлено сильной фрустрацией обменных взаимодействий между ближайшими и следующими за ближайшими соседями — конкуренцией магнитных порядков с волновыми векторами ($\pi\pi\pi$) и ($\pi\pi0$).

Работа поддержана грантом РНФ 23-42-00069.

- [1] Zh. Liu, J. Peng, X. Wang, F. Temnikov et al, Fundamental Research, in press.
- [2] A. I. Poteryaev, Z. V. Pchelkina, S. V. Streltsov, Y. Long, and V. Yu. Irkhin, JETP Letters **121**, 67 (2025).
- [3] D. A. Myakotnikov, E. V. Komleva, Y. Long, and S. V. Streltsov, Phys. Rev. B **110**, 134427 (2024).

Первый этап Атомного проекта СССР и обогащение урана на Урале

Гудин С.А.

Институт физики металлов имени М.Н. Михеева УрО РАН, Екатеринбург, Россия e-mail: gudin@imp.uran.ru

Доклад основан на работе [1], в которой освещается вклад сотрудников научных и образовательных учреждений г. Екатеринбурга в первый этап Атомного проекта СССР. Вклад этот малоизвестен, в основном в связи с переводом привлекаемых в Атомный проект на работу в такие специально создаваемые учреждения, как Лаборатория № 2 АН СССР, Уральский электрохимический комбинат (г. Новоуральск), КБ-11 (РФЯЦ-ВНИИЭФ) г. Саров. Основная часть работы посвящена описанию того как решалась труднейшая задача, вставшая перед разработчиками атомного щита СССР, - промышленное разделение изотопов урана. Так в Свердловске в 1943 г. под руководством И.К. Кикоина начались первые работы по разделению изотопов при помощи методов диффузии и центрифугования. И.К. Кикоин заместителем И.В. Курчатова был назначен и являлся ответственным за разработку промышленного метода получения урана-235.

Доклад состоит из следующих частей:

- 1. Начало Атомного проекта
- 2. Определение возможных методов разделения. Первые исследования на центрифуге Ланге
- 3. Помощь советской разведки
- 4. Начало работ по Атомному проекту в Свердловске
- 5. Пористые фильтры
- 6. Перенос работ из Свердловска в Москву
- 7. Вопрос рецензента
- 8. Уральский электрохимический комбинат
- 9. Поездка в Берлин в мае 1945 г.
- 10. Второй десант в Атомный проект Свердловских ученых
- 11. Первый диффузионный завод Д-1
- 12. Центрифужная технология обогащения урана
- 13. Разработка методов регистрации ядерных взрывов
- 14. Сотрудники лаборатории фазовых превращений Института физики металлов
- 15. Ученые химики
- 16. Вместо эпилога

За разработку диффузионного метода разделения изотопов урана 6 декабря 1951 г. «ведущие руководители работ по разделению изотопов урана диффузионным методом» стали лауреатами Сталинской премии первой степени. Еще более трудной являлась задача по получению урана методом центрифугования: если при создании диффузионных машин

можно было опираться на разработки в США и Великобритании, то разработка центифужного метода разделения опередила на несколько десятилетий мировую ядерную промышленность. Важность перехода на новый метод разделения, можно охарактеризовать двумя фактами. Первый факт. Всемирная ядерная ассоциация (англ. World Nuclear Association) утверждает, что в разгар холодной войны три газодиффузионных завода США в период наибольшей мощности потребляли 7% электроэнергии, производимой в США [2]. Второй факт. Опытный центрифужный завод Уральского электрохимического комбината в 1958-м г. «вышел на расчетный режим и показал, что при таком методе как минимум в двадцать раз (!) сокращается энергопотребление на единицу разделения» по сравнению с газодиффузным методом разделения изотопов урана (С.10 [3]).

Работа выполнена в рамках государственного задания Минобрнауки России для ИФМ УрО РАН.

Литература

- [1] С.А. Гудин, УФН **194**, №7 (2024). doi: https://doi.org/10.3367/UFNr.2024.02.039648
- [2] https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/uranium-enrichment.aspx
- [3] А.Ф. Емельяненков, Соло на центрифуге, АНО «Информационный центр атомной отрасли» (2013).

Критическая динамика спин-бозонной модели

<u>Васин М.Г.</u>^{1,2}, Елистратов А.А.¹, Ремизов С.В.¹

¹ Всероссийский научно-исследовательский институт автоматики имени Н. Л. Духова, Москва, Россия

e-mail: dr vasin@mail.ru

² Институт физики высоких давлений им. Л. Ф. Верещагина РАН, Москва, Россия

В представленной работе изучаются низкоэнергетические свойства спин-бозонной модели, которая описывает динамику 1/2-спина, связанного с бозонным термостатом, характеризующимся спектральной плотностью $I(\omega) \propto \omega^{S}$. Теоретическое описание построено в технике Келдыша-Швингера, основанной на представлении 1/2-спина майорановскими спинорами. Мы исследуем критическую динамику системы вблизи фазового перехода, проанализировав систему уравнений ренормализационной группы. Предложенный теоретический подход является более универсальным, в отличие от подхода, основанного на квантово-классическом отображении [1], поскольку он применим для $s \le 1$. Мы показываем, что как в омическом случае s = 1, так и в субомическом s < 1 в рассматриваемой модели наблюдается квантовый фазовый переход второго рода, а вычисленный критический показатель намагниченности согласуется с точным результатом гиперскейлинга и результатами численных расчётов [2,3], $1/\delta = (1-s)/(1+s)$. Кроме того, получена зависимость критического значения константы спин-бозонной связи от температуры теплового резервуара.

- [1] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. **59**, 1 (1987).
- [2] M. Vojta, N.-H. Tong, and R. Bulla, Phys. Rev. Lett. 94, 070604 (2005).
- [3] Y.-Z. Wang, S. He, L. Duan, and Q.-H. Chen, Phys. Rev. B **100**, 115106 (2019).

Секция Б2

Моделирование фазовых переходов и критических явлений

Влияние магнитного поля на термодинамические и магнитные свойства антиферромагнитной модели Гейзенберга

Муртазаев К.Ш., Магомедов М.А., Рамазанов М.К., Муртазаев А.К. Институт физики ДФИЦ РАН, Махачкала, Россия e-mail:5kurban@mail.ru

В физике конденсированного состояния большой интерес представляют исследования фазовых переходов и термодинамических свойств спиновых систем с помощью численных методов [1].

В докладе будут представлены результаты исследования антиферромагнитной модели Гейзенберга на объемно-центрированной кубической решетке при наличии конкурирующих обменных взаимодействий. Приведены результаты исследования рассматриваемой модели при наличии внешнего магнитного поля.

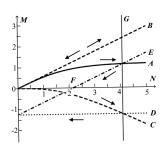
Исследования выполнены на основе репличного обменного алгоритма метода Монте-Карло, которая является наиболее эффективным методом для исследования сложных спиновых систем с дополнительными взаимодействиями [2, 3].

- [1] Diep H.T. Frustrated Spin Systems // World Scientific Publishing, 2004.
- [2] Mitsutake A., Sugita Y., Okamoto Y. Generalized-ensemble algorithms for molecular simulations of biopolymers // Biopolymers. 2001. T. 60, № 2. C. 96–123.
- [3] Биндер, К. Методы Монте-Карло в статистической физике Мир, М. 1982.

Особенности распределения нанотвердости растворов меди и титана при наложении интенсивной пластической деформации кручением

<u>Заворотнев Ю.Д.</u>¹, Томашевская Е.Ю.²

¹ΦГБНУ «Донецкий физико-технический институт им. А.А. Галкина» Донецк, ДНР, Россия e-mail: zavorotnev.yurii@mail.ru
²ΦГБОУ ВО "ДОННУЭТ" Донецк, ДНР, Россия


В последнее время интенсивно исследуются растворы меди и титана с различными металлами. Такой интерес вызван необходимостью управления и улучшения различных свойств этих востребованных в промышленности соединений. В частности, Си-Ад используется в производстве интегральных микросхем, а растворы на основе титана - в машиностроении, авиа- и космической промышленности. Одним из способов исследования является метод неразрушающего наложения интенсивной пластической деформации кручением (ИПДКР), при которой допускается до пяти и более оборотов образца вокруг некоторой оси [1]. При этом было обнаружено, что независимо от начальных условий (температура отжига) система после наложения ИПДКР приходит в одно и то же состояние, характеризуемое определенной концентрацией предельной растворимости максимальной нанотвердостью и т.д. Было обнаружено, что имеется некоторая критическая температура, при которой величина структурного ПП не меняется, что свидетельствует о достижении максимальной твердости. На эксперименте это состояние достигается путем наложения значительного числа поворотов. Однако, используя гистерезисные явления достичь цели можно за несколько проходов.

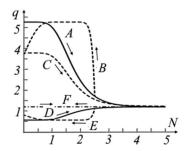
В настоящей работе экспериментальные результаты теоретически объясняются на основе феноменологической теории Ландау, который имеет вид

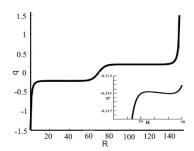
$$\begin{split} & \Phi = \frac{-\alpha_1}{2} q^2 + \frac{\alpha_2}{4} q^4 + \frac{\alpha_3}{6} q^6 + \beta_1 \varphi + \frac{\beta_2}{2} \varphi^2 + \frac{\beta_3}{3} \varphi^3 + \\ & + \delta q^2 \varphi + \gamma_1 M^s \left(q_x \frac{\partial q_y}{\partial z} - q_y \frac{\partial q_x}{\partial z} \right) + \gamma_2 M^r \left[\left(\frac{\partial q_x}{\partial z} \right)^2 + \left(\frac{\partial q_y}{\partial z} \right)^2 \right] \end{split}$$

где α_i, β_i $(i=1...3), \gamma_1, \gamma_2, \delta$ - феноменологические параметры, M - момент кручения, ось которого направлена по оси OZ, φ - плотность дефектов, q_x, q_y, q_z - компоненты векторного ПП, слагаемые с производными описывают неоднородности структуры, r=6, s=2, последние слагаемые в круглых скобках описывают возникающую спиральную структуру. Величина крутящего момента, согласно экспериментальным данным, аппроксимируется гиперболическим тангенсом, разложение которого в ряд содержит линейный и нелинейные слагаемые (рис.1). При малых значениях

оборотов N нелинейными слагаемыми можно пренебречь, т.е. в этой области применим закон Γ ука. При дальнейшем увеличении N нелинейным вкладом пренебречь невозможно. Допустим, что в результате поворота величина крутящего момента увеличилась до некоторой величины, отмеченной на рис.1 вертикальным маркером G. Направления изменения M(N), ML(N) и MNL(N) в этом случае показаны стрелками, направленными слева направо. Необходимо отметить, что линейная и нелинейная составляющие момента имеют разные знаки и их воздействие на вещество противоположно. С ростом N модуль нелинейной части увеличивается и в результате частичной компенсации имеет место отклонение величины полного момента от линейной зависимости, причем M(N) < ML(N). Предположим, что при движении в обратном направлении (стрелки справа налево) величина нелинейной составляющей остается неизменной, т.е. меняется только линейная часть момента. В этом случае движение будет происходить по линии E с составляющими B и D. Представляет интерес точка F, в которой имеет место пересечение линии E с осью абсцисс. В этой точке модуль полного момента равен нулю, линейная и нелинейная части друг друга полностью компенсируют, и система приходит в первоначальное состояние. При дальнейшем уменьшении N линейная часть стремится к нулю и остается только нелинейная, обусловленная мегапластической деформацией. Следовательно, при N=0 система будет находиться в деформированном состоянии.

Puc.1. Поведение величины крутящего момента составляющих как функции omчисла оборотов при прямом (стрелки слева направо) и обратном (стрелки справа налево) вращении.




Рис.2. Изменение структурного ПП при прямом и обратном поворотах плунжера

Рассмотрим изменение структурного \prod при обратном момкип плунжера. вращении показано в [1] при прямом независимо вращении начальных условий, задаваемых температурой закалки, система приходит в стационарное состояние. Если температура закалки будет соответствовать стационарному состоянию, процессе вращения структурный ПП не меняется соединение имеет наивысшую нанотвердость

(линия F рис.2). На рис.2 сплошными линиями показаны изменения структурного ПП с начальными условиями выше и ниже критической температуры, соответствующей стационарному состоянию [1], при прямом вращении плунжера (стрелки слева направо). Допустим, как показано на

рис. 1, при достижении некоторого значения момента направление вращения плунжера инвертируется. Тогда меняться будет только составляющая момента и изменение структурного ПП показано на рис.2 пунктирными линиями B и E (стрелки справа налево). Необходимо отметить, что скорость изменения ПП по модулю при движении в обратном направлении будет больше, чем при прямом. Это обусловлено более быстрым уменьшением модуля приложенного момента. При приближении к точке F, в которой момент равен нулю, скорость изменения $\Pi\Pi$ падает и в самой точке равна нулю, что свидетельствует о равенстве нулю момента и возврату в результате взаимной компенсации линейной и нелинейной частей структурного ПП в исходное состояние. Необходимо отметить, что при этом число оборотов не равно нулю. Однако, линейные составляющие момента и структурного ПП отличны от нуля и для их обнуления необходимо вернуть плунжер в исходное положение, т.е. N=0. Однако, в этом случае нелинейная часть ПП не компенсируется, и система переходит в состояние с другим ПП, возникающее при более низкой температуре отжига и более близким к критической температуре. Если теперь наложить ИПДК, то изменение структурного ПП будет происходить вдоль пунктирной линии C, значения $\Pi\Pi$ вдоль которой меньше, чем на первоначальной кривой А. Выполняя такой цикл несколько раз, можно приблизиться к стационарному состоянию, не применяя аномально большие величины вращения плунжера. Аналогичный результат будет достигнут, если подобный цикл осуществить с начальными условиями (температура отжига) ниже критической. В этом случае после выполнения цикла система будет попадать в состояние с более высокой температурой отжига. Из вышеизложенного следует, что, применяя гистерезисную процедуру при наложении интенсивной пластической деформации кручением, можно достичь более высокой прочности материала.

Экспериментальные зависимости распределения нанотвердости растворов титана по радиусу приведены в публикации [2]. Отмечено, что эти кривые имеют параболическую форму с максимумом в районе центра радиуса, однако, правое и левое значения нанотвердости часто не совпадали. В настоящей работе выдвинуто предположение, что имеет место проскальзывание образцов при постановке эксперимента. Используемый в данной работе соответствующий неравновесный потенциал не содержит инварианты Лифшица, поскольку эксперимент являлся статическим и проводился при конкретном значении угла поворота. Однако, были добавлены дополнительные слагаемые, учитывающие взаимодействие структурным И дислокационным параметрами приближении ближайших соседей. Численные вычисления показали, что распределение структурного параметра порядка по радиусу не является монотонной функцией, а имеет осциллирующий характер (рис.3). При отсутствии проскальзывания максимум нанотвердости находится в середине радиуса цилиндрического образца (рис.4). График симмеириченн относительно точки экстремума в середине радиуса. Учет проскальзывания образца в центре или на краю радиуса приводит к деформации графикоа нанотвердлсти, который теряет симметричность. Также смещается точка экстремума и при значительной величине проскальзывания распределение нанотвердости по радиусу может стать монотонным.

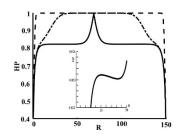


Рис.3. Распределение Рис.4. структурного ПП по радиусу в соста идеальном кристалле. времен

Рис.4. Эволюция радиальной составляющей нанотвердости по времени. Пунктирная кривая — начальный момент времени, штрих-пунктирный — промежуточный момент, сплошная — конечный

Выводы.

- 1. Показана возможность увеличения нанотвердости двухклмпонентных растворов с помощью использования гистерезисных явлений при наложении интенсивной плпстической деформации кручением (ИПДК).
- 2. Рассмотрено поведение величин деформации и плотности дислокаций при наложении ИПДК без проскальзывания. Показано, что изменение этих величин имеет осциллирующий характер.
- 3. Показано, что динамика нанотвердости по радиусу образца при наложении ИПДК обусловлена двумя механизмами: а) деформацией элементарной ячейки, что приводит ослаблению связей между атомами, b) изменением плотности дислокаций.
- 4. Обнаружены аномалии скорости изменения дислокаций, обусловленные осциллирующим характером распределения структурного параметра порядка.

Литература

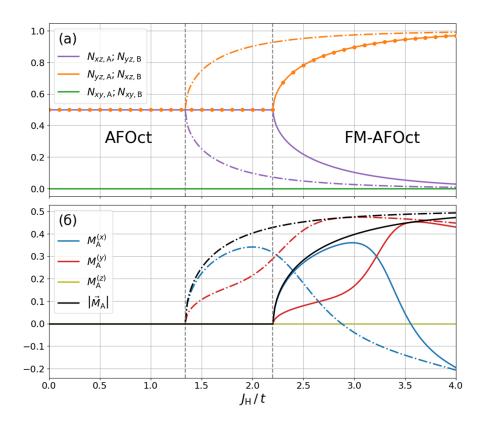
- [1] B.B. Straumal, A.R. Kilmametov, A. Korneva, P. Zieba, Yu. Zavorotnev, L. Metlov, O. Popova, B. Baretzky, Crystals 11, 766 (2021).
- [2] Горнакова А. С., Страумал Б. Б., Головин Ю. И.,. Афоникова Н. С, Пирожкова Т. С., Тюрин А. И.// Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2021. № 11. С. 45.

Фазовая диаграмма основного состояния вырожденной модели Хаббарда: применение к слоистому перовскиту Sr₂VO₄

Игошев П.А. 1 , Чижов Д.Е. 2

¹Институт физики металов УрО РАН, Екатеринбург, Россия e-mail: igoshev_pa@imp.uran.ru

²Институт физики металов УрО РАН, Екатеринбург, Россия e-mail: dchizhon@gmail.com


Начиная с 70-х годов XX века, дальний орбитальный порядок привлекает внимание исследователей [1, 2]. Общей причиной такого порядка является наличие нескольких конкурирующих взаимодействий, благоприятствующих различному типу дальнего порядка, и большого числа степеней свободы, участвующих в формировании волновой функции основного состояния. Примеры соединений, демонстрирующий такой тип орбитального порядка: $KCuF_3$, $Tl_2Ru_2O_7$, $LiVO_2$, $SrCrO_3$, $Sr_3Cr_2O_7$, $LaVO_3$. В слоистом перовските Sr_2VO_4 наблюдаются аномалии поведения магнитной восприимчивости, что также может свидетельствовать о наличии «скрытого» порядка [3–4].

В работах [5-6] из гамильтониана вырожденной модели Хаббарда для t_{2g} -мультиплета на квадратной решетке с заполнением «1 электрон на узел» в пределе большого кристаллического поля $\Delta_{CF}\gg t^2/U$ и сильных корреляций $U \gg t$ (t — интеграл переноса между ближайшими соседями, U — параметр прямого кулоновского взаимодействия) был выведен $\widehat{H} = \widehat{H}_{CF} + \widehat{H}_{so} + \widehat{H}_{exch},$ эффективный гамильтониан \hat{H}_{CF} где кристаллического поля, \widehat{H}_{so} — гамильтониан спингамильтониан взаимодействия, \widehat{H}_{exch} — гамильтониан эффективного орбитального обмена. Важная особенность рассматриваемого гамильтониана Хаббарда зависимость перескока от орбитали: из ху-орбитали перескок возможен вдоль обеих связей, из xz(yz) — только вдоль оси x(y).

Известно, что в случае большого хундовского взаимодействия J_H стабилизируется дальний насыщенный ферромагнитный антиферроорбитальный порядок — фаза FM-AFO_{xz/vz} [1]. Кроме того, ранее что спин-орбитальное взаимодействие приводит к было найдено, антиферрооктупольный, формированию фазы **AFOct** магнитный и орбитальный дальний порядок [3-4]: средний спиновый и орбитальный присутствует момент на узле равен нулю, НО двухподрешеточный октупольный порядок.

Путем анализа основного состояния гамильтониана \widehat{H} было найдено, что увеличение хундовского обмена приводит к неустойчивости фазы AFOct по отношению к формированию ферромагнитного порядка — реализуется промежуточная между AFOct и FM-AFO_{xz/yz} слабоферромагнитная фаза FM-AFOct. Критическое значение J_H , при

котором происходит фазовый переход, увеличивается с ростом спинорбитального взаимодействия λ . Переход между фазами AFOct и FM-AFOct является непрерывным, см. рис. 1 (а). Фаза FM-AFOct характеризуется значительной величиной полного спинового момента, одинакового для обеих подрешеток и лежащего в плоскости xy, см. рис. 1 (б).

Рис 1. $\Delta_{CF} = t$, U = 20t. (a) Заселенности $N_{m,s}$ орбиталей на подрешетках, (б) компоненты и модуль вектора намагниченности \vec{M}_s — как функции J_H . Сплошными (штрихпунктирными) линиями показаны результаты при $\lambda = 0.1t$ ($\lambda = 0.05t$).

Исследование выполнено за счет гранта Российского научного фонда №23-42-00069, https://rscf.ru/project/23-42-00069/.

- [1] К.И. Кугель, Д.И. Хомский, Успехи физических наук 136, С. 621 (1982).
- [2] С.В. Стрельцов, Д.И. Хомский, Успехи физических наук **187**, С. 1205 (2017).
- [3] G. Khaliullin, Progress of Theoretical Physics Supplement **160**, P. 155 (2005).
- [4] G. Jackeli, G. Khaliullin, Physical Review Letters 103, P. 067205 (2009).
- [5] P. A. Igoshev, S. V. Streltsov, K. I. Kugel, JMMM 587, 171315 (2023).
- [6] P. A. Igoshev, D. E. Chizhov, V. Y. Irkhin, S. V. Streltsov, Physical Review B **110**, 115110 (2024).

Описание фазовых переходов двухкомпонентных растворов на основе меди при наложении интенсивной пластической деформации кручением

<u>Гладилин О.А.</u>^{1,2}, Заворотнев Ю.Д.², Гуменник К.В.² 1 ФГБОУВО «Донецкий государственный университет», Донецк, Россия 2 ФГБНУ «Донецкий физико-технический институт им. А.А. Галкина», Донецк, Россия gladilinog@gmail.com

Актуальным являются исследования их свойств при наложении мегапластической деформации, в частности интенсивной пластической деформации кручением (ИПДКР) [1-3]. Скорость подобных нагрузок может быть малой или большой. В последнем случае возникшая в веществе в

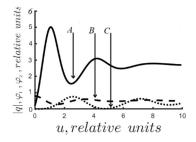


Рис.1. Эволюция кинка (A), общей дислокации (B) и винтовой дислокации (C).

результате внешнего воздействия волна, передний фронт которой называется кинком, не нуждается в подводе энергии. Этот процесс является автоволновым и представляет собой простейший топологический солитон. Изучение воздействия ИПДК на двухкомпонентные материалы позволяет получать соединения уникальными характеристиками инновационных ДЛЯ материалов, которые не встречаются

природе. Актуальности разработки методов получения характеристик таких материалов обусловлено возможностью заранее прогнозировать их свойства, а также возможность совершенствовать и оптимизировать свойства для определенно поставленных задач. И несомненным

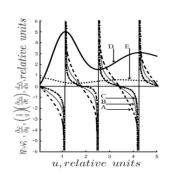


Рис.2. Зависимости скоростей рождения С, уничтожения В дислокаций краевого вида и их суммы А. D – кинк, Е – плотность дислокаций.

будет преимуществом являться снижение финансовых затрат на проведения экспериментов выявлений характеристик И ускорение получаемых данных. Разработка теоретического метода описания данного процесса будет прогрессом, технологическим что может оптимизацией различных послужить ДЛЯ предприятий. Закономерности распространения изучаются c кинка помощью феноменологической Ландау. В теории разложении неравновесного (1) потенциала учитывались инварианты Лифшица, слагаемые до шестого порядка по векторному структурному параметру порядка (ПП) и третьего по скалярным ПП (плотности общих и винтовых дислокаций).

$$\Phi = -\frac{\alpha_1}{2}q^2 + \frac{\alpha_2}{4}q^4 + \frac{\alpha_3}{6}q^6 + \beta_1\varphi_1 + \frac{\beta_2}{2}\varphi_1^2 + \frac{\beta_3}{3}\varphi_1^3 + \frac{\beta_4}{4}\varphi_1^4 +
+ \beta_5 \left(\frac{\partial \varphi_1}{\partial z}\right)^2 + \omega_1\varphi_2 + \frac{\omega_2}{2}\varphi_2^2 + M(N)^2 \frac{\omega_3}{3}\varphi_2^3 + \frac{\omega_4}{4}\varphi_2^4 +
+ M(N)^2 \omega_5 \left(\frac{\partial \varphi_2}{\partial z}\right)^2 + \delta_1 q^2 \varphi_1 + \delta_2 q^2 \varphi_2 + \delta_3 \varphi_1 \varphi_2 +
+ \gamma_1 M(N)^s \left(q_x \frac{\partial q_y}{\partial z} - q_y \frac{\partial q_x}{\partial z}\right) + \gamma_2 M(N)^r \left[\left(\frac{\partial q_x}{\partial z}\right)^2 + \left(\frac{\partial q_y}{\partial z}\right)^2\right]$$
(1)

где ω_i , β_i (i = 1, 2, 3, 4), α_i (i = 1, 2, 3), γ_i , δ_i (i = 1, 2, 3) феноменологические параметры, q — векторный структурный параметр порядка (ПП), q_x , q_y — компоненты векторного структурного ПП, φ_1 φ_2 скалярные $\Pi\Pi$ (плотности краевой и винтовой дислокаций), M(N) – момент кручения, N – число оборотов, r - s = 4 (r = 6, s = 2) [15]. Производные от плотностей описывают пространственную неоднородность распределения дислокаций. Конкуренция последних двух слагаемых с производными от ПП приводит к появлению спиральной структуры. Первое из этих двух слагаемых, составленное из инвариантов Лифшица, может быть равно нулю в кристаллах некоторой симметрии, но при наложении ИПДКР, когда симметрия понижается, будет отлично от нуля. Этим обстоятельством и обусловлено появление множителя $M(N)^2$ в двух последних слагаемых выражения (1). Как указано выше, плотность φ_2 описывает винтовую дислокацию. В настоящей задаче предполагается, что $\varphi_2 \neq 0$ только при наложении ИПДКР. Следовательно, $\omega_1 = 0$, $\omega_3 < 0$ и соответствующее слагаемое имеет множитель $M(N)^2$. Кроме этого аналогичный множитель содержит и слагаемое с пространственной производной от φ_2 , поскольку при M(0) = 0 винтовая дислокация отсутствует. Необходимо отметить, что при решении поставленной задачи учтено взаимодействие только между структурным и дислокационными ПП.

Динамику кинка рассмотрим с помощью системы дифференциальных уравнений Ландау — Халатникова для компонент векторного и скалярных ПП

$$\frac{\partial q_i}{\partial t} = -\gamma_i \frac{\delta \Phi}{\delta q_i}, \quad \frac{\partial \varphi_j}{\partial t} = -\gamma_j \frac{\delta \Phi}{\delta \varphi_j} \tag{2}$$

Кроме этого, учитываются также инварианты Лифшица, описывающие возникновение спиральной структуры при наложении интенсивной пластической деформации кручением.

В минимизирующей системе уравнений Эйлера осуществлялся переход к автомодельной переменной u=z-ct, где c —скорость кинка. Новая переменная связывает временную t и декартовую z переменные. В результате имеем автономную систему (3) обыкновенных дифференциальных уравнений относительно структурного дислокационных $\Pi\Pi$, причем решение оказывается неподвижным относительно новой системы координат.

$$\frac{\partial q_x}{\partial t} = -\gamma_x \left[q_x \left(-\alpha_1 + \alpha_2 q^2 + \alpha_3 q^4 + 2\delta_1 \varphi_1 + 2\delta_2 \varphi_2 \right) + 2\gamma_1 M(N)^r \frac{\partial q_y}{\partial z} - 2\gamma_2 M(N)^s \frac{\partial^2 q_x}{\partial^2 z} \right]$$

$$\frac{\partial q_y}{\partial t} = -\gamma_y \left[q_y \left(-\alpha_1 + \alpha_2 q^2 + \alpha_3 q^4 + 2\delta_1 \varphi_1 + 2\delta_2 \varphi_2 \right) - 2\gamma_1 M(N)^r \frac{\partial q_x}{\partial z} - 2\gamma_2 M(N)^s \frac{\partial^2 q_y}{\partial^2 z} \right]$$

$$\frac{\partial \varphi_1}{\partial t} = -\gamma_3 \left[\delta_1 q^2 + \beta_1 + \beta_2 \varphi_1 + \beta_3 \varphi_1^2 + \beta_4 \varphi_1^3 - 2\beta_5 \frac{\partial^2 \varphi_1}{\partial z^2} + \delta_3 \varphi_2 \right]$$

$$\frac{\partial \varphi_2}{\partial t} = -\gamma_4 \left[\delta_2 q^2 + \omega_2 \varphi_2 + M(N)^2 \omega_3 \varphi_2^2 + \omega_4 \varphi_2^3 - 2M(N)^2 \omega_5 \frac{\partial^2 \varphi_2}{\partial z^2} + \delta_3 \varphi_1 \right]$$
(3)

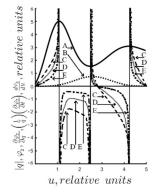


Рис.3. Скорости рождения E, аннигиляции D и суммарная E винтовой дислокации при прохождении кинка, A—кинк, B—плотность краевой дислокаций.

Полученный результат предположении, что температура отжига (начальное условие) меньше критической, которая соответствует стационарному состоянию, представлен Реальное распространение рис.1. кинка идет справа налево. Очевидно, что процесс переключения имеет колебательный Если характер. температура отжига превышает критическую, то колебательный процесс сохраняется, но график его будет в противофазе к сплошной кривой рис.1.

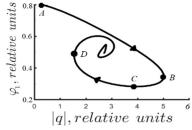


Рис.4. Зависимость плотности краевой дислокаций от деформации в процессе наложения ИПДКР.

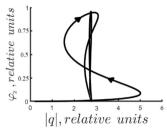


Рис.5. Зависимость плотности краевой дислокаций от деформации в процессе наложения ИПДКР.

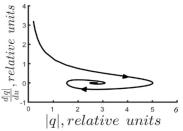


Рис. 6. Фазовый портрет структурного ПП при наложении ИПДКР.

Каждая из этих кривых приближается к соответствующей асимптоте. Обнаружены особенности поведения скоростей рождения и краевой (рис.2). и винтовой (рис.3) дислокаций как функций структурного ПП. Ввиду волнового характера процесса распространения волны переключения эти скорости имеют особенности (сингулярность) в точках экстремума зависимости величины кинка от автомодельной переменной (рис.2,3). Такая сингулярность означает, как показано на рис.4,5, изменение знака направления движения в координатах φ -q. Нули производных на рис.2,3 соответствуют экстремумам зависимости плотностей краевой и винтовой дислокаций $\varphi(q)$ (рис.4,5). В итоге образуется сходящаяся к определенной особой точке структура, по форме напоминающая логарифмическую спираль. Единственность этой точки (устойчивый фокус) обусловлена переходом системы в стационарное состояние. Отсюда следует вывод, что все кривые $\varphi(q)$ независимо от температуры отжига (начальное состояние) будут сходиться к одной точке. На рис. 6. приведен фазовый портрет структурного ПП.

Литература

- [1] Страумал Б.Б., Заворотнев Ю.Д., Давдян Г.С. Кручение под высоким давлением и фазовые превращения в металлических сплавах І. Физика и техника высоких давлений. 2022. Т.32, №1. С. 5.
- [2] Straumal B.B., Kilmetov A. R., Korneva Anna, Zieba P., Zavorotnev Yuri, Metlov Leonid, Popova Olga, Baretzky Brigitte. The Enrichment of (Cu, Sn) Solid Solution Driven by High-Pressure Torsion. Crystals. 2021. − V.11, №7. − P. 766. https://doi.org/10.3390/cryst11070766. IF 2.67.
- [3] Заворотнев Ю.Д., Метлов Л.С, Томашевская Е.Ю. Установление стационарного состояния при наложении интенсивной пластической деформации кручения в двухкомпонентных кристаллах. ФТТ 2022. − Т.64. №4. С. 462. DOI: 10.21883/FTT.2022.04.52186.263.

Фазовые переходы порядок-беспорядок в сплавах Fe₃Al и др., подвергнутых мегапластической деформации

Метлов Л.С. 1,2 , Блинова Е.Н. 3

 1 ГБУ "Донецкий физико-технический институт им ак. А.А. Галкина" РАН, Донецк, Россия

e-mail: lsmet@donfti.ru

² Донецкий Национальный Университет, Донецк, Россия ³Центральный научно-исследовательский институт черной металлургии им. И. П. Бардина, Москва

Известны фазовые переходы типа порядок-беспорядок в таких сплавах и соединениях, как Fe₃Al [1], Cu₃Au [2], NiMnIn [3] и др. В сплавах Fe₃Al, например, было открыто явление частичного восстановления упорядоченного состояния В версии B2после мегапластической деформации (МПД) [1]. Разрушение дальнего порядка в версии D03 на начальной стадии пластического деформирования связано со смещением критической точки фазового перехода порядок-беспорядок в область более низких температур из-за приложенных внешних напряжений, и может быть описано в рамках стандартной феноменологической теории фазовых переходов [4]. Частичное же восстановление порядка может быть описано в рамках нестационарной эволюционной термодинамики (НЭТ) [4-6].

Упорядочение компонентов по узлам кристаллической решетки такое, что атомы железа занимают три ГЦК подрешетки, а атомы алюминия оставшуюся одну подрешётку неизбежно нарушают эквивалентность подрешеток, что за счет взаимодействия структурной и компонентной подсистем сопровождается слабыми структурными искажениями. Каждая из подсистем в общем случае обладает своей критической температурой фазового перехода, T_M и T_{comp} . При $T_{comp} > T_M$ и текущей температуре чуть ниже T_{comp} структурный (мартенситный) переход еще не произошел, но слабые структурные искажения уже возникают вследствие взаимодействия указанных подсистем [7].

Еще более интересная ситуация возникает в сплаве NiMnIn, в котором возможно существование и взаимодействие трех подсистем — структурной, концентрационной и магнитной, в общем случае с температурой Кюри T_c , отличной от T_M и T_{comp} . В этом случае имеется три типа "независимых" фазовых переходов, которые, однако, через взаимодействие могут влиять друг на друга.

Свободная энергия для сплава NiMnIn, испытывающего тетрагональные искажения, в общем случае будет иметь тогда вид

$$f = f_d + f_m + f_c + f_{dm} + f_{dc} + f_{mc}, \tag{1}$$

где

$$f_{d} = \frac{1}{2}a(e_{2}^{2} + e_{3}^{2}) + \frac{1}{3}be_{3}(e_{3}^{2} - 3e_{2}^{2}) + \frac{1}{4}c(e_{2}^{2} + e_{3}^{2})^{2}$$
(2)

деформационная часть свободной энергии [],

$$f_{m} = \frac{1}{2} \alpha \left(m_{1}^{2} + m_{2}^{2} + m_{3}^{2} \right) + \frac{1}{3} \delta \left(m_{1}^{2} + m_{2}^{2} + m_{3}^{2} \right)^{2} + K \left(m_{1}^{2} m_{2}^{2} + m_{2}^{2} m_{3}^{2} + m_{1}^{2} m_{3}^{2} \right). \tag{3}$$

часть свободной энергии магнитной подсистемы [],

$$f_c = \frac{1}{2} a_i (S_i')^2 + \frac{1}{4} c_i (S_i')^4, (i=1,2),$$
 (4)

часть свободной энергии, связанной с концентрационными параметрами порядка

$$f_{dm} = B_2 \left[\frac{1}{\sqrt{2}} e_2 \left(m_1^2 - m_2^2 \right) + \frac{1}{\sqrt{6}} e_3 \left(3 m_3^2 - m^2 \right) \right], \tag{5}$$

$$f_{dc} = g_{12}S_1'e_2 + g_{22}S_2'e_2 + g_{13}S_1'e_3 + g_{23}S_2'e_3$$
 (6)

$$f_{mc} = \eta_{11}S_1'm_1 + \eta_{21}S_2'm_1 + \eta_{12}S_1'm_2 + \eta_{22}S_2'm_2 + \eta_{13}S_1'm_3 + \eta_{23}S_2'm_3$$
 (7)

части свободной энергии, отвечающие за взаимодействие структурной и магнитной, структурной и концентрационной, а также магнитной и концентрационной подсистем, соответственно.

В свою очередь, a, b, c, α , δ , K, a_i , c_i , B_2 , g_{ik} , η_{ik} — параметры модели, e_2 , e_3 — тетрагональные компоненты тензора деформаций (деформационный параметр порядка), m_i — компоненты намагниченности, $S_1^!$, $S_2^!$ — концентрационные параметры порядка, Критическая зависимость от темперктуры осуществляется через коэффициенты теории a, α , a_i и c_i

$$a = a_0 \left(\frac{T}{T_m} - 1 \right), \quad \alpha = \alpha_0 \left(\frac{T}{T_c} - 1 \right), \quad a_i = a_0 \left(\frac{T}{T_i} - 1 \right), \quad . \tag{8}$$

При выполнении условий $T_1 > T_2 > T_c > T_m$ в процессе охлаждения произойдет цепочка фазовых переходов беспорядок — частичный беспорядок, частичный беспорядок — порядок [8], магнитный фазовый переход и, наконец, мартенситный фазовый переход. Не взирая на то, что мартенситный фазовый переход происходит при температуре ниже T_m , слабые структурные (тетрагональные) искажения типичные для мартенситной фазы за счет взаимодействия между подсистемами начнут проявляться сразу же ниже температуры T_1 . Кроме того, за счет взаимодействия между подсистемами ниже этой температуры следует ожидать и появление слабой намагниченности.

При выполнении условий $T_c > T_1 > T_2 > T_m$ в процессе охлаждения ниже температуры Кюри вначале произойдет магнитный фазовый переход, который спровоцирует частичное упорядочение в распределении компонентов сплава, а также слабые тетрагональные искажения его кристаллической структуры. Следует ожидать, что самый первый фазовый переход вызовет проявления всех типичных для данного материала фаз. При этом слабая тетрагональность, появившаяся при первом фазовом переходе, будет усилена при последующих фазовых переходах, и только при

температуре ниже T_m сформируется полноценная (не слабая) тетрагональная фаза.

Как было сказано выше, сплав Fe₃Al подвергнутый мегапластической деформации на начальной стадии демонстрировал вполне ожидаемый эффект разупорядочения в распределении компонентов железа и алюминия по узлам кристаллической решетки. На последующей стадии МПД

упорядочение компонентов частично восстанавливалось, что может быть описано в рамках НЭТ [5, 6], если структурное искажение кристаллической решетки рассматривать, как некоторый вид структурного дефекта (рис. 1). Как видно, параметр порядка S₁, стартуя с малых значений, выходит ненулевой некоторый стационарный уровень, параметр же порядка стремится К нулевому значению (фаза В2).

Следует ожидать, что аналогичные эффекты могут возникать и в других сплавах

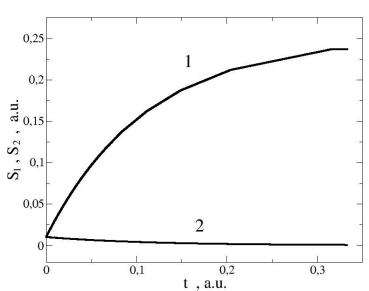


Рис. 1 Эволюция концентрационных параметров порядка S_1 (кривая 1) и S_2 (кривая 2) в процессе мегапластической деформации, расчитанную в рамках нестационарной эволюционной термодинамики.

и соединениях, склонных к фазовым переходам упорядочения—разупорядочения, осложненных влиянием электрических или магнитных свойств.

- [1] A.M. Glezer, I.A. Timshin, I.V. Shchetinin, M.V. Gorshenkov, R.V. Sundeev, A.G. Ezhova, J. Alloys and Comp. **744**, 791 (2018).
- [2] Л.И. Стефанович, А.А. Субботин, ФТВД 15, 3, 117 (2005).
- [3] Д.Д. Кузнецов, А.В. Маширов, Е.И. Кузнецова, А.В. Прокунин, Д.В. Данилов, И.И. Мусабиров, В.В. Коледов, В.Г. Шавров, Журнал Радиоэлектроники, 5, 1684 (2024).
- [4] Л.С. Метлов, А.М. Глезер, Тезисы IV международной конференции "Физика конденсированных состояний", С. 254 (2025).
- [5] L.S. Metlov, Phys. Rev. Let. **106**, 165506(4), (2011).
- [6] L.S. Metlov, Phys. Rev. E 90, 022124(8), (2014).
- [7] Л.С. Метлов, Тезисы III международной конференции "Физика конденсированного состояния" Черноголовка. С. 10 (2023).
- [8] Л.С. Метлов, ФТВД **33**, 2, 16 (2023)

Фазовые переходы в двумерной антиферромагнитной модели Поттса на решетке кагоме

<u>Ризванова Т.Р.</u>¹, Рамазанов М.К.^{1,2}, Магомедов М.А.^{1,2}, Муртазаев А.К.^{1,2} ¹Институт физики Дагестанского федерального исследовательского центра РАН, Махачкала, Россия

²Дагестанский государственный университет, Махачкала, Россия e-mail: rizv@yandex.ru

Уникальные свойства низкоразмерных, квазиодномерных и двумерных структур и их использование в наносистемах выглядят многообещающе: это может позволить совершить значительный прорыв во многих научных, технологичных областях в обозримом будущем. Поэтому закономерно, что изучению этих структур сейчас уделяется большое внимание [1].

Модель Поттса на решетке Кагоме может быть применена для описания ряда двумерных материалов, в которых наблюдаются необычные температурные зависимости различных термодинамических параметров. Кроме того, интерес к этой модели обусловлен тем, что она может быть использована для описания реальных материалов и соединений. В докладе будут представлены исследование антиферромагнитной модели Поттса на решетке кагоме при наличии конкурирующих обменных взаимодействий. Исследования выполнены алгоритмом Ванга-Ландау метода Монте-Карло. Данный метод является наиболее эффективным при исследовании сложных спиновых систем с дополнительными взаимодействиями [2,3].

- [1] Diep H.T. Frustrated Spin Systems. World Scientific Publishing Co. Pte. Ltd., P. 624, Singapore. 2004.
- [2] F. Wang, D.P. Landau. Phys. Rev. E 64, 056101 (2001).
- [3] F. Wang, D.P. Landau. Phys. Rev. Lett. 86, 2050 (2001).

Монте-Карло моделирование динамического магнитного фазового перехода в осциллирующем магнитном поле

Соколовский В.В., Бучельников В.Д.

Челябинский государственный университет, Челябинск, Россия e-mail: vsokolovsky84@mail.ru

В многочастичных системах с конкурирующими взаимодействиями проявление неравновесного поведения гистерезиса динамически упорядоченного состояния, которые формируются под влиянием осциллирующего внешнего параметра. В случае существенного равновесия, состояния при достижении отклонения системы управляющим параметром критического значения могут наблюдаться значительные изменения В характеристиках системы. показательных примеров подобных явлений служит динамический фазовый переход, который имеет место в ферромагнитных материалах под воздействием переменного магнитного поля. Это явление было описано в модели Изинга, известной как кинетическая модель Изинга [1-3]. В модели динамической что траектория намагниченности полагается, значительные изменения при динамическом переходе и изменении величины внешнего управляющего параметра осциллирующего магнитного поля с амплитудой h_0 и частотой ω .

Динамические отклики в модели Изинга были интенсивно исследованы в рамках приближения теории молекулярного поля [1-4] с учетом точно решаемых уравнений и определением параметра порядка, как усредненную по времени намагниченность за полный цикл осциллирующего магнитного поля. Тем не менее, в расчетах молекулярного поля спиновые флуктуации игнорируются, и результаты не содержат информации о микроскопических деталях. Напротив, учет тепловых флуктуаций на микроскопическом уровне, используя метод Монте-Карло, позволяет исследовать истинный динамический фазовый переход в кинетической модели Изинга. В ряде работ [5-7] авторами были исследованы статистическое распределение динамического параметра порядка, динамическая природа фазового перехода, оценки критических показателей и определения классов универсальности кинетической модели Изинга.

В представленной работе мы рассмотрели динамическую модель Гейзенберга в осциллирующем магнитном поле на простой кубической решетке с учетом ближайших взаимодействий, а также на кубической решетке типа $L2_1$, характерной для сплавов Гейслера. В последнем случае учтены дальнодействующие обменные взаимодействия на примере сплава Ni_2MnTi . Отметим, что кристаллическую структуру $L2_1$ типа можно представить как четыре взаимопроникающие ГЦК подрешетки элементов Ni, Ni, Mn и Ti.

В общем случае гамильтониан системы имеет следующий вид:

$$H(t) = -\sum_{\langle i,j \rangle} J_{ij} \mathbf{S}_i \mathbf{S}_j - h(t) \sum_i S_i^z.$$
 (1)

Первое слагаемое — спин-спиновое обменное взаимодействие, J_{ij} — параметры обменного взаимодействия (для простой кубической решетки J_{ij} = 1 и сумма берется только по ближайшим соседям, для гейслеровской структуры значения J_{ij} получены из первопринципных расчетов и суммы берутся по 8-ми ближайшим координационным сферам). Второе слагаемое — энергия осциллирующего магнитного поля, заданная в косинусоидальной форме: $h(t) = h_0 \cos(\omega t)$.

Моделирование выполнено на кубических решетках размерами $N_{sc}=L_{sc}\times L_{sc}\times L_{sc}$ ($L_{sc}=25$) и $N_{L2_1}=L_{L2_1}\times L_{L2_1}\times L_{L2_1}$ ($L_{L2_1}=6$ – количество 16-ти атомных элементарных ячеек гейслеровской структуры) с учетом периодических граничных условий. Динамическая эволюция спинов исследована с применением схемы Метрополиса для переворота отдельных спинов. Согласно данной схеме, случайно выбранные компоненты вектора S_i приняты с вероятностью:

$$W(\mathbf{S}_i^{old} \to \mathbf{S}_i^{new}) = min[1, \exp(-\Delta H/k_B T)]$$
 (2)

где ΔH — изменение энергии из-за выбора значений новых компонент вектора спина, k_B — постоянная Больцмана, T — температура. Обновление N_{sc} и N_{L2_1} случайно выбранных спинов составляет один шаг Монте-Карло (МК) и определяет единицу времени в данном исследовании. Полное число шагов МК составляло 5×10^4 .

Через достаточно длительное время система достигает динамического стационарного состояния. Этот факт подтверждается стабилизацией усредненных по времени динамических величин, которые принимают устойчивые значения. Все расчеты проводятся при фиксированных температуре (T) и амплитуде (h_0) осциллирующего магнитного поля. Для установления термолизации системы первые 10 периодов внешнего поля были отброшены, а численные данные были собраны и проанализированы в течение следующих 100 периодов поля.

На следующем этапе температура изменяется с малым шагом, в то время как остальные параметры остаются неизменными. Процесс повторяется, причем в качестве начального состояния для нового значения температуры используется последняя полученная спиновая конфигурация. Таким образом, исследуется температурная зависимость динамических характеристик системы.

Основной характеристикой, представляющей интерес, является намагниченность, зависящая от времени M(t), интегрирование которой приводит к динамическому параметру порядка Q:

$$Q = \frac{\omega}{2\pi} \oint M(t)dt,$$

$$M(t) = \frac{1}{N} \sum_{i} \sqrt{(S_i^x)^2 + (S_i^y)^2 + (S_i^z)^2}.$$
(3)

В представленном исследовании частота магнитного поля принималась постоянной $\omega = 2\pi f = 2\pi \times 0.01$, т.е. для одной полной осцилляции магнитного поля требуется 100 шагов МК.

Динамическое усреднение энергии рассчитывалось в виде

$$E = \frac{\omega}{2\pi} \oint H(t)dt. \tag{4}$$

На рис. 1 представлена зависимость намагниченности от температуры и времени, выраженного через усредненное число шагов МК, для ферромагнетика с простой кубической решеткой. Временная шкала включает в себя 1000 шагов МК, что соответствует 10 шиклам осцилляции магнитного поля с амплитудой поля $h_0 = 0.5$. Данные получены путем результатов усреднения расчетов намагниченности М в интервале от 40 000 до 50 000 MK. шагов Температура представлена В единицах k_BT/J_{ij} . Можно видеть, что в зависимости от величины и знака магнитного поля наблюдаются осциллирующие биения намагниченности, особенно вблизи фазового перехода между ферропарамагнитной фазой.

Интегрирование усредненной намагниченности и энергии по времени за период колебаний магнитного поля с помощью ур. (3) и (4) позволяет получить

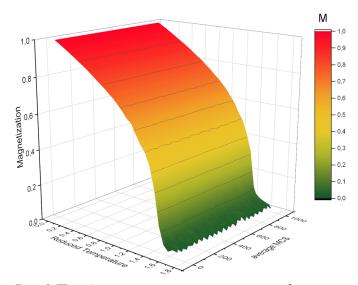


Рис. 1 Поведение намагниченности как функции температуры и времени (усредненного числа шагов МК) для ферромагнитной системы с простой кубической решёткой.

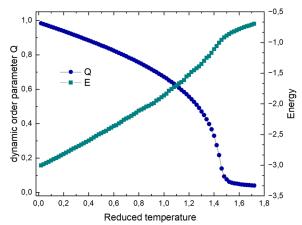


Рис.2 Температурные зависимости динамического параметра порядка и энергии для ферромагнитной системы с простой кубической решёткой.

температурные зависимости динамического параметра порядка Q и энергии E, изображенные на рис. 2. Перегибы обеих кривых указывают на то, что

динамический фазовый переход наблюдается в окрестностях критической температуры $T \approx 1.4$.

На рис. З представлены изотермы усредненного поведения намагниченности и энергии ферромагнетика в зависимости от числа шагов МК с учетом осцилляций магнитного поля. При низких температурах система находится в упорядоченном состоянии и испытывает слабые спиновые флуктуации, приводящие к весьма слабым осцилляциям намагниченности во времени. При этом поведение энергии демонстрирует плавное косинусоидальное поведение, повторяющее поведение развертки магнитного поля. Минимум энергии приходится на максимум величины магнитного поля. Повышение температуры приводит к увеличению спиновых флуктуаций. В результате чего, наблюдаются ассиметричные колебания намагниченности и энергии, ярко проявляющиеся в области фазового перехода.

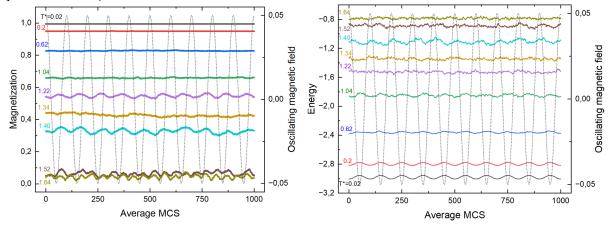


Рис. 3 Динамическое поведение намагниченности и энергии при разных температурах в осциллирующем магнитном поле.

Таким образом, в представленном докладе будет сделан акцент на исследовании влиянии частоты и амплитуды осциллирующего магнитного поля на магнитные и термодинамические характеристики как модельного сплава Гейслера основе Ni-Mn-Ti, ферромагнетика, так на И демонстрирующего стабильные магнитокалорические свойства осциллирующих магнитных полях.

Работа выполнена при поддержке Российского научного фонда (проект $N_2\sim25-12-20024$).

- [1] T. Tomé and M.J. de Oliveira, Phys. Rev. A 41, 4251 (1990).
- [2] P. Riego, P. Vavassori, and A. Berger, Physica B 549, 13 (2018).
- [3] P.A. Rikvold et al., Phys. Rev. E 49, 5080 (1994).
- [4] M. Acharyya, B.K. Chakrabarti, Phys. Rev. B 52, 6550 (1995).
- [5] S.W. Sides, P.A. Rikvold, M.A. Novotny, Phys. Rev. Lett. 81, 834 (1998).
- [6] S.W. Sides, P.A. Rikvold, M.A. Novotny, Phys. Rev. E 59, 2710 (1999).
- [7] M. Acharyya, Phys. Rev. E **59**, 218 (1999).

Особенности кинетики фазовых превращений в сегнетоэлектриках

Метлов Л.С. 1,2 , Гордей М.М. 1

¹Донецкий физико-технический институт им. А. А. Галкина, Донецк, Россия ²Донецкий государственный университет, Донецк, Россия e-mail: gordei-maksim@mail.ru

В традиционных моделях фазовых переходов в сегнетоэлектриках, основанных на теории Ландау, основное внимание уделяется поляризации как ключевому параметру порядка. Однако такие модели часто оказываются недостаточными для описания сложных явлений, сопровождающих фазовые переходы, из-за игнорирования структурных изменений кристаллической решётки. Как ешё Индебом [1-2],показал сегнетоэлектрические переходы практически всегда связаны требует деформациями кристалла, ЧТО включения дополнительных параметров порядка, описывающих эти искажения. Учёт макроскопических деформаций в модели Ландау позволяет более точно описать взаимосвязь между изменениями структуры кристалла и вектором поляризации, что может быть существенно для описания кинетики процесса фазового перехода. Для анализа кинетики таких переходов, например, из кубической высокосимметричной фазы в более низкосимметричную тетрагональную фазу, свободную энергию, по аналогии с магнитными переходами [3], можно выразить с учётом как поляризационных, так и деформационных параметров порядка [4]:

$$\Phi = \Phi_0 + \frac{1}{2}a(e_2^2 + e_3^2) + \frac{1}{3}be_3(e_3^2 - 3e_2^2) + \frac{1}{4}c(e_2^2 + e_3^2)^2 + \frac{1}{2}\alpha\mathbf{P}^2 + \frac{1}{4}\beta\mathbf{P}^4 + D_2\left(\frac{1}{\sqrt{2}}e_2(P_x^2 - P_y^2) + \frac{1}{\sqrt{6}}e_3(3P_z^2 - \mathbf{P}^2)\right) - \mathbf{E} \cdot \mathbf{P}$$
(1)

где Φ_0 — энергия без учёта параметров порядка; $e_2 = (\varepsilon_{xx} - \varepsilon_{yy})/\sqrt{2}$, $e_3 = (2\varepsilon_{zz} - \varepsilon_{xx} - \varepsilon_{yy})/\sqrt{6}$ — линейные комбинации диагональных компонент тензора деформации, отвечающие тетрагональным искажениям; $\mathbf{P} = \mathbf{P}(P_x, P_y, P_z)$ — вектор электрической поляризации, \mathbf{E} — внешнее электрическое поле.

Будем полагать, что критически зависят от температуры только коэффициенты при вторых степенях параметров порядка, т.е.:

$$a = a_0 \left(\frac{T}{T_S} - 1 \right), \alpha = \alpha_0 \left(\frac{T}{T_C} - 1 \right)$$

где a_0 , α_0 — некоторые новые постоянные, T_S — температура структурного фазового перехода, T_C — температура Кюри.

Релаксация параметров порядка подчиняется системе эволюционных уравнений типа Ландау—Халатникова [4]:

$$\frac{\partial \eta_k}{\partial t} = -\gamma_k \frac{\partial \Phi}{\partial \eta_k} + f_k \tag{2}$$

где η_k — переменная, соответствующая для индексов 1, 2, 3 компонентам сегнетоэлектрического параметра порядка P_x , P_y , P_z , а для индексов 4, 5 — структурным e_2 , e_3 ; γ_k — кинетические коэффициенты; f_k — функция теплового шума в виде белого шума.

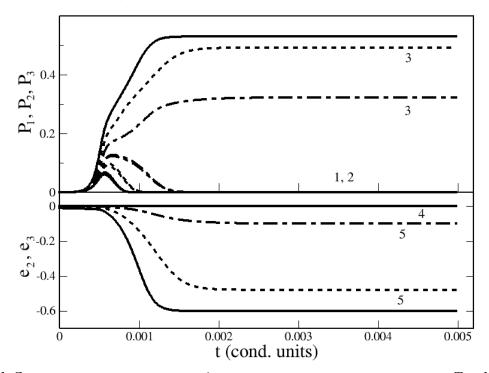


Рис. 1. Эволюция параметров порядка при температуре термостата $T = 140 \ K$ и разных критических температурах T_S : 1,2,3 — компоненты вектора поляризации P_x , P_y , P_z ; 4,5 — структурные параметры порядка e_2 , e_3

Результаты расчётов с использованием уравнения (2) при закалке из неполярной фазы в температуру $T=140~{\rm K} < T_{\rm C}$ для параметров $T_{\rm S}=130~{\rm K}$ (штрих-пунктирные линии), $T_{\rm S}=140~{\rm K}$ (штриховые линии), $T_{\rm S}=150~{\rm K}$ (сплошные линии), $T_{\rm C}=150~{\rm K}$, $D_{\rm S}=0.05$ приведены на рис. 1.

Из данного рисунка следует, что на начальной стадии релаксации системы все три компоненты вектора электрической поляризации возрастают одновременно, что соответствует направлению вдоль оси третьего порядка (диагональ кубической элементарной ячейки). А затем, в случае совпадения критических температур (сплошные линии), малое тетрагональное искажение приводит к повороту вектора поляризации вдоль оси четвертого порядка, что соответствует вытянутой оси тетрагональной элементарной ячейки.

В случае же несовпадения критических температур, можем видеть, что поворот вектора поляризации начинает происходить немного раньше возникновения достаточных малых искажений на начальном этапе

эволюции системы, что может говорить о "триггерном" фазовом переходе и возникновении слабой тетрагональности (штрих-пунктирные линии).

Из рис. 2. а, более четко видно, что на температурном интервале AB возникает слабая тетрагональная фаза, в отличие от рис. 2. б, где изменение инварианта второго порядка структурной подсистемы происходит

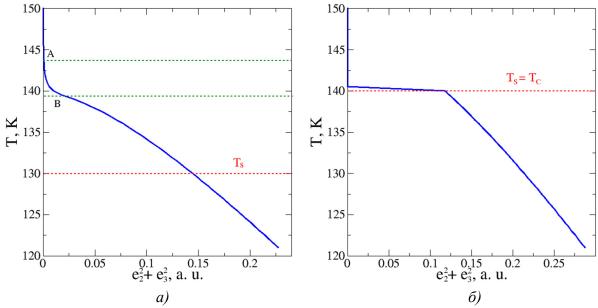


Рис. 2. Зависимость значения инварианта второго порядка структурной подсистемы от температуры: а) при различных критических температурах $T_S = 130~K, T_C = 150~K;$ б) при одинаковых критических температурах $T_S = T_C = 140~K$

скачкообразно в сильную тетрагональную фазу.

Такую слабую тетрагональность можно описывать с помощью малых параметров. В этом случае, нам будет необходимо приравнять к нулю производные свободной энергии по структурным параметрам порядка и, оставив самую низшую степень структурного параметра порядка выразить е₂ и е₃ через поляризационные параметры порядка:

$$e_2 = -\frac{D_2}{a\sqrt{2}}(P_x^2 - P_y^2);$$
 $e_3 = -\frac{D_2}{a\sqrt{2}}(2P_z^2 - P_x^2 - P_y^2).$

- [1] В.Л. Индебом, Кристаллография 5, 115 (1960).
- [2] В.Л. Индебом, Известия АН СССР, сер. Физическая 24, 1180 (1960).
- [3] A.N. Vasil'ev, A.D. Bozhko, V.V. Khovailo and all, Phys. Rev. B **59**, 1113-1120 (1999).
- [4] Л. С. Метлов, М. М. Гордей, Ю. Д. Заворотнев, В.Н. Варюхин, ФТТ **67**, 2, 332-339 (2025).

Фазовые переходы трехмерной модели Поттса

<u>Рамазанов М.К.</u> 1,2 , Муртазаев А.К. 1 , Магомедов М.А. 1 , Рамазанов Р.М. 2 , Магомедов А.Р. 1

¹Институт физики ДФИЦ РАН, Махачкала, Россия ²Дагестанский государственный университет, Махачкала, Россия e-mail: sheikh77@mail.ru

Для исследования фазовых переходов (ФП), магнитных, термодинамических и критических свойств магнитных материалов в современной физике конденсированных сред используются различные решеточные модели. Наиболее широко для изучения физических свойств магнитных материалов используют модели Изинга, Гейзенберга, Поттса и др. [1].

В данной работе нами изучаются фазовые переходы трехмерной трехкомпонентной модели Поттса на гексагональной решетке. Эта модель довольно уникальна и до сих пор малоизучена. Модель Поттса может быть использована для описания поведения некоторых классов адсорбированных газов на графите [2]. Анализ результатов, полученных при исследовании двумерной модели Поттса с числом состояний спина q=4 на гексагональной решетке [3,4], показывает, что в данной модели наблюдается ФП второго рода. Вопрос о роде ФП для трехмерного случая до сих пор является дискуссионным. В связи с этим нами проведено исследование трехмерной ферромагнитной и антиферромагнитных моделей Поттса с q=3.

Гамильтониан модели Поттса с учетом взаимодействия ближайших соседей имеет следующий вид:

$$H = -J \sum_{\langle i,j\rangle, i\neq j} S_i S_j = -J \sum_{\langle i,j\rangle, i\neq j} Cos \theta_{i,j} , \qquad (1)$$

где J — параметр обменных ферро- (J>0) и антиферромагнитного (J<0) взаимодействия, $\theta_{i,j}$, $\theta_{i,k}$ — углы между взаимодействующими спинами.

В данном исследовании был использован репличный обменный алгоритм метода Монте-Карло. Этот алгоритм является одним из наиболее эффективных для исследования подобных систем. Построены температурные зависимости основных термодинамических параметров. На основе гистограммного метода проведен анализ характера $\Phi\Pi$.

Исследование выполнено за счет гранта Российского научного фонда N 25-12-20029.

- [1] H.T. Diep, Frustrated Spin Systems, World Scientific Publishing Co. Pte. Ltd., Singapore (2004).
- [2] E. Domany, M. Schick, J.S. Walker, Phys. Rev. Lett. 38, 1148 (1977).
- [3] А.К. Муртазаев, М.К. Рамазанов, М.К. Мазагаева, М.А. Магомедов, ЖЭТФ **156**, 502 (2019).
- [4] М.К. Рамазанов, А.К. Муртазаев, М.А. Магомедов, М.К.Мазагаева, ФТТ **62**, 442 (2020).

Исследование термодинамических и полевых характеристик модели Изинга со смешанным спином на квадратной решетке

Магомедов М.А., Муртазаев А.К., Гасанов С.Ш. Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: magomedov ma@mail.ru

В природе встречается большое количество магнитных материалов, образованных двумя веществами, имеющими разные по величине спины. Наиболее простой из моделей, используемых для описания таких материалов, является модель Изинга со смешанным спином.

В данной работе нами приводятся результаты исследования методом Монте-Карло модели Изинга со смешанным спином S = (1/2, 1) на квадратной решетке.

Гамильтониан такой системы может быть представлен в виде:

$$H = -J_1 \sum_{\langle i,j \rangle} \sigma_i S_j - J_2 \sum_{\langle i,j \rangle \in B} S_i S_j + D \sum_{j \in B} S_j^2 - h \sum_{i \in A} \sigma_i - h \sum_{i \in B} S_i,$$

$$\sigma_i = \pm 1/2, \qquad S_i = 0, \pm 1,$$
(1)

где первая сумма учитывает обменное взаимодействие между спинами в подрешетке A и подрешетке B, вторая сумма — обмен только между спинами в подрешетке B, третья — одноионную анизотропию спинов в подрешетке B, четвертая и пятая суммы — влияние внешнего магнитного поля.

Структура модели и обменные взаимодействия между спинами на решетке приведены на рисунке 1.

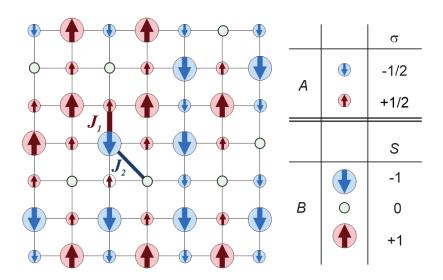


Рис. 1. Обменные взаимодействия между спинами S и σ , а также S и S.

Данная модель имеет весьма богатую фазовую диаграмму и описывает (при различных значениях J_1 , J_2 и D) большое количество квазидвумерных магнитных материалов на основе двух неэквивалентных элементов. Фазовая диаграмма модели при J_1 = -1 приведена на рисунке 5.

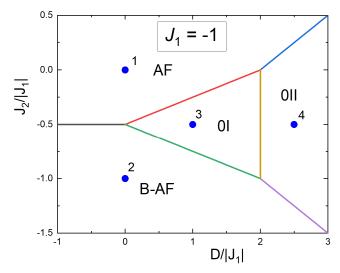


Рис. 2. Фазовая диаграмма модели.

Магнитные структуры основного состояния для каждой фазы приведены на рисунке 3.

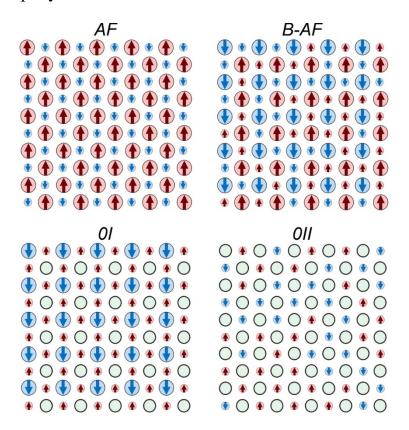


Рис. 3. Магнитные структуры основного состояния.

Нами проведено комплексное исследование модели Изинга со смешанным спином S = (1/2, 1) на квадратной решётке с использованием алгоритма Ванга-Ландау, а также репличного-обменного алгоритма метода Монте-Карло. Исследование выполнено для каждой фазы в широком диапазоне температур и внешних магнитных полей.

Пример влияния внешнего магнитного поля на систему приведен на рисунке 4, где представлена полевая зависимость намагниченности системы при различных температурах для фазы OI.

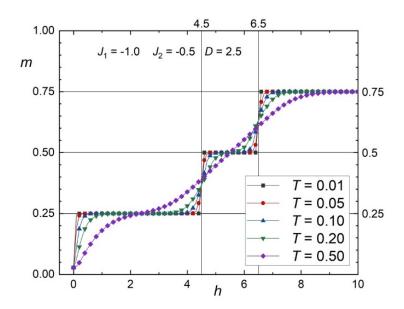


Рис. 4. Полевая зависимость намагниченности m.

Анализ этого графика позволяет сделать ряд важных выводов. В отсутствие внешнего магнитного поля намагниченность системы равна нулю, что свидетельствует о компенсации магнитных моментов и отсутствии спонтанной намагниченности. Однако, при приложении даже незначительного магнитного поля, в системе происходит скачкообразное увеличение намагниченности. Это связано с тем, что внешнее поле нарушает симметрию системы, делая энергетически более выгодной структуру с ненулевым магнитным моментом m = 0.25. Дальнейшее увеличение магнитного поля приводит к ступенчатому изменению намагниченности. При достижении поля значения h = 4.5, система переходит на следующую ступень с магнитным моментом m = 0.5, а при h = 6.5 происходит еще один скачок в состояние с максимальным для данной системы магнитным моментом m = 0.75. Такие же исследования температурных и полевых зависимостей различных термодинамических параметров проведены и для всех остальных фаз.

Исследование выполнено в рамках научной программы НЦФМ (проект «Исследования в сильных и сверхсильных магнитных полях»).

Фазовые переходы трехмерной модели Поттса на гексагональной решетке

Мазагаева М.К., Рамазанов М.К. Магомедов М.А., Муртазаев А.К. Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: mazagaeva86@mail.ru

Решеточная модель Поттса является одной из теоретических инструментов, применяемых для изучения физических явлений в статистической физике и физике конденсированного состояния [1]. Повышенный интерес вызван зависимостью универсальности критического поведения модели Поттса от размерности системы d и числа спиновых состояний q [2].

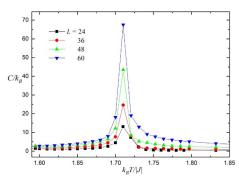
На сегодняшний день актуальным вопросом является зависимость физических свойств модели Поттса от пространственной размерности решетки, числа состояний спина q, величины взаимодействия вторых соседей, внешнего магнитного поля и от геометрии решетки [3]. Актуальность вызвана тем, что модель Поттса описывает большой класс реальных физических систем: слоистые магнетики, пленки жидкого гелия, сверхпроводящие пленки, адсорбированные пленки и др. К примеру, структурные ФП в таких материалах как $SrTiO_3$ или $Pb_3(PO_4)_2$ [4] хорошо описываются двумерной моделью Поттса с числом спиновых состояний q=3, а ФП в пирохлоре KOs_2O_6 - трехмерной ферромагнитной моделью Поттса с числом спиновых состояний q=4 [5]. По этим причинам, в данной работе на основе репличного обменного алгоритма метода Монте-Карло (МК) нами проведено исследование ФП трехмерной ферромагнитной модели Поттса с числом состояний спина q=4 на гексагональной решетке.

Гамильтониан модели Поттса с числом состояний q=4 с учетом взаимодействий ближайших соседей может быть представлен в следующем виде:

$$H = -J \sum_{\langle i,j\rangle, i \neq j} S_i S_j = -J \sum_{\langle i,j\rangle, i \neq j} \cos \theta_{i,j} \tag{1}$$

где J – параметр обменного ферромагнитного (J>0) взаимодействия, $\theta_{i,j}$ – угол между взаимодействующими спинами S_i - S_j . Суммирование в уравнении (1) проводится для каждой пары соседних спинов. Направления спинов заданы таким образом, что выполняется равенство:

спинов заданы таким образом, что выполняется равенство:
$$\theta_{i,j} = \begin{cases} 0, & ecnu \quad S_i = S_j \\ 109.47^{\circ}, & ecnu \quad S_i \neq S_j \end{cases} \quad \cos \theta_{i,j} = \begin{cases} 1, & ecnu \quad S_i = S_j \\ -1/3, & ecnu \quad S_i \neq S_j \end{cases}. \tag{2}$$


Согласно условию (2) для двух спинов S_i и S_j энергия парного обменного взаимодействия $E_{i,j} = J$, если $S_i = S_j$. В случае, когда $S_i \neq S_j$, энергия $E_{i,j} = J/3$. Таким образом, энергия парного взаимодействия спинов равна одной величине при их одинаковом направлении, и принимает другое значение при не совпадении направлений спинов.

Для наблюдения за температурным ходом поведения теплоемкости C нами использовали выражение:

$$C = (NK^{2}) \left(\langle U^{2} \rangle - \langle U \rangle^{2} \right), \qquad (3)$$

где $K = |J|/k_B T$.

Температурные зависимости теплоемкости C для систем с различными линейными размерами L представлены на рис. 1 Как видно на рисунке, для всех значений L на температурной

Puc.1 Температурные зависимости теплоемкости

зависимости теплоемкости наблюдаются ярко выраженные максимумы. С ростом линейных размеров системы наблюдается рост максимумов теплоемкости, причем максимумы, в пределах погрешности, приходятся на одну и ту же температуру. Ярко выраженный максимум теплоемкости может указывать на существование ФП в исследуемой модели.

Известно, что скачкообразный рост энергии в критической области в спиновых системах свидетельствует о $\Phi\Pi$ первого рода. Это продемонстрировано на рис.2. Как видно на рисунке вблизи критической температуры ($T_C = 1.709$) наблюдается резкий скачок энергии.

Намагниченность системы *т* вычислялась по формуле:

$$m = \frac{1}{N} \sum_{i=1}^{N} S_{i}, (4)$$

где S_i – трехкомпонентный единичный вектор $S_i = (S_i^x, S_i^y, S_i^z)$.

На рис. 3 представлены графики зависимости намагниченности m от температуры для разных значений L. На рисунке видно, что в низкотемпературной области значение намагниченности равно единице, что характерно для ферромагнитной модели. При увеличении температуры вблизи критической области наблюдается резкий спад намагниченности.

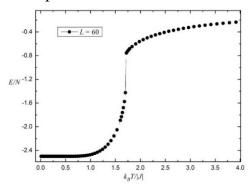


Рис.2 Температурная зависимость энергии для L=60.

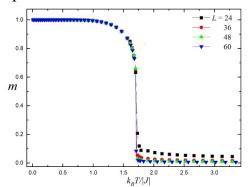


Рис. 3. Температурные зависимости намагниченности т.

Для определения рода $\Phi\Pi$ нами использовался гистограммный анализ данных метода МК [6]. Этот метод позволяет надежно определить род $\Phi\Pi$.

Полученные на основе гистограммного анализа данных результаты показывают, что в данной модели наблюдается ФП первого рода. Это продемонстрировано на рис. 4 и 5. На рисунке 4 представлены гистограммы распределения энергии для систем с различными линейными размерами для

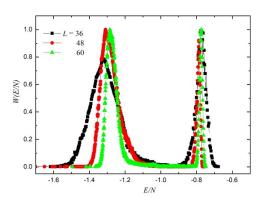


Рис.4. Гистограммы распределения энергии для разных L.

значения. Графики построены для температуры близкой к критической температуре (T=1.709). Из рисунка видно, что в зависимости вероятности W от энергии наблюдается два максимума для всех значений L, которые свидетельствуют о $\Phi\Pi$ первого рода. Наличие двух максимумов на гистограммах распределения энергии является достаточным условием для $\Phi\Pi$ первого рода.

На рис. 5 представлены гистограммы распределения энергии для системы с линейными размерами L=48. Графики построены при различных температурах близких критической температуре. Из рисунка видно,

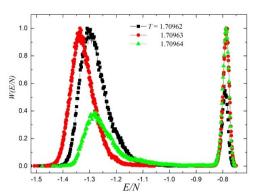


Рис.6. Гистограммы распределения энергии для различных температур.

что в зависимости вероятности W от энергии E для всех температур близких к критической температуре наблюдаются два максимума, которые также свидетельствует о $\Phi\Pi$ первого рода. Таким образом, проведённый анализ характера фазовых переходов на основе гистограммного метода анализа данных показал, что в рассматриваемой модели наблюдается $\Phi\Pi$ первого рода.

- [1] Р. Бэкстер, Точно решаемые модели в статистической механике. М.: Мир (1985).
- [2] F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
- [3] M. Nauenberg, D.J. Scalapino, Phys. Rev. Lett. 44, 837 (1980).
- [4] Y. Huang, K. Chen, Y. Deng, J. L. Jacobsen, R. Koteck'y, J. Salas, A. D. Sokal, J.M. Swart, Phys. Rev. E 87, 012136 (2013).
- [5] R. Igarashi, M. Ogata. J. Phys.: Conf. Ser. 200, 022019 (2010).
- [6] F. Wang, D.P. Landau, Phys. Rev. E 64, 0561011 (2001).

Влияние внешнего магнитного поля на свойства термодинамические и магнитные свойства четырехвершинной модели Поттса на слоистой треугольной решетке

Джамалудинов М.Р., Муртазаев К.Ш., Муртазаев А.К., Магомедов М.А., Рамазанов М.Р., Курбанова Д.Р.

> Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: dzhamaludinov.1993@mail.ru

В последнее время большое внимание привлекает задача исследования влияния различных внешних факторов таких как температура и магнитное поле на топологию основного состояния спиновых систем [1-5]. В данной работе исследуется модель Поттса с q=4 на слоистой треугольной решетке.

Гамильтониан данной модели имеет следующий вид:
$$H = -J_1 \sum_{(i,j)} \cos \theta_{i,j} - J_2 \sum_{(i,k)} \cos \theta_{i,k} - h \sum_{(i)} \cos \theta_i$$

$$\cos \theta_{i,j} = \begin{cases} 1, \theta_{i,j} = 0 \\ -\frac{1}{3} & \theta_{i,j} = 109.47^{\circ} \end{cases}$$
 (1)

где J_1 -обменное взаимодействие между ближайшими соседями, J_2 -обменное взаимодействие спинов в соседних слоях, $\theta_{i,j}$ —угол между спинами.

В ходе исследования реплично-обменным алгоритмом метода Монте-Карло были найдены основные состояния и получены температурные зависимости теплоемкости и намагниченности для значений $J_1=-1$, $J_2=1$, в диапазоне полей $0 \le h \le 10$. На зависимости намагниченности от магнитного поля в основном состоянии обнаружены 3 плато приходящиеся на интервалы $0.5 \le h \le 2.0$ -1-я область, $3.5 \le h \le 5.5 - 2$ -я область и $h \ge 6.5$. Каждое соответствует различным типам магнитного упорядочения. Поведение системы при h=3 и h=6 требует более детального исследования. При данных значениях магнитного поля в системе нет какого-либо упорядочения и возможно наблюдаются фрустрации. Кроме того, обнаружено, в диапазоне полей $1 \le h \le 2.8$ наблюдается расщепление теплоемкости

- М. К. Рамазанов, А. К. Муртазаев, М. А. Магомедов, М. К. Мазагаева. Письма в ЖЭТФ, Т. 114, вып. 11, С. 762 – 767. 2021.
- [2] М.К. Рамазанов, А.К. Муртазаев, М.А. Магомедов, М.К. Мазагаева, М.Р. Джамалудинов. Физика твердого тела, Т. 64, вып.2, 2022.
- М. К. Бадиев, А. К. Муртазаев, М. К. Рамазанов, М. А. Магомедов. [3] ЖЭТФ, Т. 161, вып. 5, С. 753–759, 2022.
- J. Hagemeister, N. Romming, K. von Bergmann, et al. Nat Commun 6, 8455, [4]
- K.Binder. J Stat Phys 24, 69–86 1981. [5]

Критическое поведение трехкомпонентной модели Поттса с вмороженным беспорядком на квадратной решетке

Бабаев А.Б. 1,2 , Атаева Г.Я. 1 , Муртазаев А.К. 1,3 , Ибаев Ж.Г. 1 , Бабаев М.А. 3 Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: b albert78@mail.ru

² Дагестанский Государственный Педагогический Университет, Махачкала, Россия ³ Дагестанский Государственный Университет, Махачкала, Россия

Изучение влияния вмороженного беспорядка на фазовые переходы (ФП) и критическое поведение (КП) является одной из важных задач в физике конденсированных сред. Как известно, вмороженный беспорядок существенен, если критический индекс теплоемкости α для однородной спиновой системы положителен. Это правило известно, как критерий Харриса [1]. Критерий Харриса неприменим к двумерной модели Изинга в силу того, что для нее критический индекс теплоемкости α =0. В работе [2] путем фермионного представления модели Изинга было показано, что влияние примеси затрагивают только поведение теплоемкости, в то время как остальные термодинамические и корреляционные функции не изменяют своего критического поведения.

Конечно-размерный анализ данных, проведенный для неразбавленной модели Поттса с q=3 на квадратной решетке, подтверждает наличие ФП II рода с критическими показателями характерными, для класса универсальности двумерной трехкомпонетной модели Поттса (см. [3]). В соответствии с критерием Харриса [1] для модели Поттса с q=3 примеси должны повлиять на КП, в силу того, что для этой модели теория в неразбавленном режиме предсказывает критический индекс для теплоемкости α >0, α =1/3 [3, 4]. Однако вопрос об универсальности новых критических индексов для модели Поттса на квадратной решетке в разбавленном режиме остается открытым.

В связи с этим в настоящей работе исследовано КП трехкомпонентной модели Поттса на квадратной решетке при концентрациях спинов p=0.95, 0.90, 0.80. С применением теории конечно-размерного скейлинга [4] показано, что класс универсальности данной модели в разбавленном режиме описывается новым набором критических индексов.

Исследование выполнено за счет гранта Российского научного фонда № 25-12-20029

- [1] A.B. Harris, J. Phys. C 7, 1671 (1974)
- [2] Vik. Dotsenko, Vl. Dotsenko, Adv. Phys. 32, 129 (1983)
- [3] F.Y. Wu, Rev. Mod. Phys. **54**, 235 (1982)
- [4] А.К. Муртазаев, А.Б. Бабаев, Вычислительная физика и проблемы фазовых переходов, Москва, Физматлит, 184 с. (2023)

Модель Поттса с q=3 на ОЦК решетке в магнитном поле

Курбанова Д.Р., Магомедов М.А., Рамазанов М.К., Муртазаев А.К. Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: d kurbanova1990@mail.ru

Модель Поттса является обобщением модели Изинга, полученной путем изменения числа спиновых состояний q. Фазовые переходы в модели Поттса с q состояниями, демонстрируют более разнообразные свойства чем в модели Изинга, поскольку число состояний q связано с симметрией порядка параметра [1]. Фазовые переходы в антиферромагнитных (АФ) моделях Поттса более сложны, поскольку сильно зависят от микроструктуры решетки.

Отдельный интерес представляет то, что в АФ модели Поттса энтропия основного состояния в низкотемпературной области остается ненулевой даже без фрустрации. К примеру, такое поведение наблюдается в спиновом стекле, основными признаками которого является фрустрация и беспорядок. Неупорядоченные версии модели Поттса (стекла Поттса) обычно используют для описания большого класса анизотропных ориентационных стекол [2,3].

В настоящей работе на основе репличного алгоритма и алгоритма Ванга-Ландау метода Монте-Карло мы исследуем влияние конкуренции обменного взаимодействия и магнитного поля на фазовые переходы и термодинамические свойства антиферромагнитной модели Поттса с числом состояний спина q=3 на объемно-центрированной кубической решетке.

Гамильтониан модели:

$$H = -J_1 \sum_{\langle i,j \rangle, i \neq j} \delta(S_i, S_j) - J_2 \sum_{\langle i,k \rangle, i \neq k} \delta(S_i, S_k), \tag{1}$$

где J_1 и J_2 — параметры обменных взаимодействий для первых и вторых ближайших соседей. Расчеты проводились для систем с периодическими граничными условиями и линейными размерами $2 \times L \times L \times L = N$, $L = 8 \div 64$.

На ОЦК решетке АФ модель Поттса претерпевает два перехода, что можно явно продемонстрировать с помощью критического поведения C, как показано на рис. 1 (здесь и далее статистическая погрешность не превышает размеров символ, использованных для построения зависимостей). Первый максимум обусловлен переходом системы из упорядоченного состояния в частично разупорядоченное состояние, а второй — соответствует переходу системы из частично разупорядоченного в парамагнитное состояние. При изменении J_2 расстояние между максимумами уменьшается и в точке -2/3 схлопываются в один. При дальнейшем изменении величины обменного взаимодействия J_2 на графиках теплоемкости наблюдается один максимум, который соответствует температуре $\Phi\Pi$. Отметим, что при $J_2 < -2/3$ наблюдается сдвиг максимумов теплоемкости в сторону более высоких температур, что можно объяснить тем, что увеличение величины

взаимодействия вторых ближайших соседей увеличивает вклад энергии взаимодействия по модулю, вследствие чего система становится более устойчивой, что, соответственно, повышает температуру ФП.

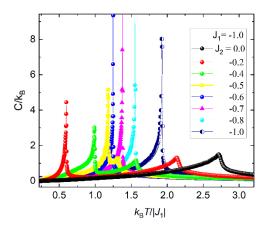


Рис. 1 Температурная зависимость C при J_1 = -1 и различных значениях J_2 с линейными размерами L=24.

Для определения критических температур T_N , был использован метод кумулянтов Биндера U_L четвертого порядка. Погрешности определения критических температур в сравнении с критическими температурами, полученными по максимумам теплоемкости не превышали 1%. Точность метода пересечения кумулянтов достаточно высока, что позволяет использовать его в качестве основного метода определения T_N при $\Phi\Pi$ 2-го рода, а при $\Phi\Pi$ 1-го рода T_N определялись по максимумам теплоёмкости. подробного анализа порядка ФΠ также был использован гистограммный анализ данных. Данный метод позволяет определить тип ФП и кроме того, дает возможность оценить достоверность результатов, полученных на основе расчета кумулянтов Биндера. Построена фазовая диаграмма.

На рис. 2 приведена фазовая диаграмма зависимости критической температуры от величины взаимодействия вторых ближайших соседей J_2 . Наблюдаются несколько различных фаз: фаза с нарушенной подрешеточной симметрией (BSS), упорядоченная фаза с перестановочно-симметричным состоянием (PSS), фаза с нарушенной подрешеточной симметрией другого типа (BSS1) и парамагнитная (PM), все они встречаются в мультикритической точке (T_N =1.320(5), J_2 =-2/3). Взаимодействия вторых ближайших соседей приводит к фазовому расслоению. Анализ порядка ФП, проведённый для всего рассмотренного интервала J_2 , показывает, что переход из фазы PSS в фазу BSS является переходом первого рода, а переход из фазы BSS в PM фазу – второго рода, также линия переходов из фазы BSS1

в РМ фазу является переходом первого рода [4]. Влияние магнитного поля приводит к смене типа фазового перехода.

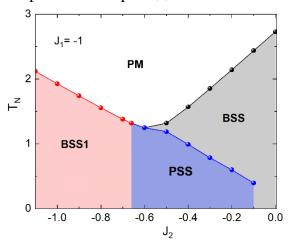


Рис. 2 Фазовая диаграмма модели Поттса с q=3 на ОЦК решетке при J_1 = -1 и J_2 <0. Температура приведена в единицах J_1/k_B . Все фазовые переходы первого порядка, за исключением BSS-PM перехода, который является непрерывным.

Исследование выполнено за счет гранта РНФ № 25-12-20029, https://rscf.ru/project/25-12-20029/ \rangle

- [1] F.Y. Wu, Rev. Mod. Phys. **54**, 235 (1982).
- [2] Binder K. and Reger J.D. Theory of orientational glasses models, concepts, simulations // Advances in Physics. 41, 547 (1992).
- [3] Binder K. and Kob W. Glassy Materials and Disordered Solids. World Scientific, Singapore, (2005).
- [4] D.R. Kurbanova, M.K. Ramazanov, M.A. Magomedov, A.K. Murtazaev, JETP136, 729 (2023).

Компьютерное моделирование поверхностных фазовых переходов в ферромагнитных пленках с решеткой антиточек

Симакова С.С., Белим С.В., Тихомиров И.В.

Омский государственный технический университет, Омск, Россия e-mail: sofya simakova@list.ru

Тонкие ферромагнитные пленки с решеткой антиточек относятся к искусственным наноструктурированным материалам [1]. Основным свойством данных материалов является возможность управлять их магнитными характеристиками с помощью изменения геометрических параметров решетки антиточек. Решетка антиточек представляет собой упорядоченный массив наноразмерных пор в сплошной пленке. На сегодняшний день разработано несколько технологий получения таких наноструктур [2]. Изменение магнитных свойств таких пленок связано с увеличением их свободной поверхности, что сказывается как на температуре Кюри, так и на значении коэрцитивной силы [3].

Для некоторых ферромагнитных материалов наблюдается явление поверхностного магнетизма, связанное с отличием температуры упорядочивания спинов в поверхностном слое от температуры Кюри в основном объеме системы [4]. В связи с увеличением площади поверхности в пленках с антиточками растет относительная доля спинов, взаимодействие которых определяется поверхностным обменным интегралом. Вследствие этого влияние поверхностного магнетизма в таких пленках должно проявляться сильнее, чем в непрерывных системах.

В данной работе выполнено компьютерное моделирование фазовых переходов в тонких пленках с решеткой антиточек в рамках модели Изинга с помощью алгоритма Метрополиса. При компьютерном моделировании рассматривалась тонкая ферромагнитная пленка с порами квадратной формы. Толщина пленки равна D моноатомных слоев (ML). Поры в пленке имеют размер $a \times a$ атомов. Поры располагаются в узлах квадратной сетки с периодом d. Гамильтониан такой модели может быть представлен как сумма парных обменных взаимодействий для ближайших соседей.

$$H = -J\sum_{\textit{Bulk}} s_i \, s_j - J_S \sum_{\textit{Surf}} s_i \, s_j - J_{\textit{BS}} \sum_{\textit{B/S}} s_i \, s_j - \mu_{\textit{B}} h \sum s_i$$

В первом слагаемом суммируются энергии обменного взаимодействия пар спинов, находящихся в объеме системы. Это взаимодействие описывается обменным интегралом J. Во втором слагаемом рассматриваются только пары спинов, находящиеся на поверхности. Обменный интеграл такого взаимодействия равен J_S . Третье слагаемое рассматривает пары спинов, один из которых расположен на свободной поверхности пленки, а второй в первом подповерхностном слое. Обменный интеграл для такой пары спинов равен J_{BS} = $(J_B \cdot J_S)^{1/2}$. Четвертое слагаемое

показывает взаимодействие с внешним магнитным полем h. μ_{B} — магнетон Бора. Поры моделируются с помощью атомов с нулевым спином.

Для исследования поверхностного и объемного фазового переходов вычислялось значение поверхностной намагниченности m_S и объемной намагниченности m, как средние значения спинов соответствующей подсистемы. Значения намагниченностей m и m_S играют роль параметров порядка для объемного и поверхностного фазовых переходов соответственно. При этом следует учитывать, что в пленке с порами к поверхностным относятся также спины внутри поверхностей пор. То есть у пленки с порами, в отличии от сплошной пленки, есть только одна свободная поверхность.

Для расчета характеристик системы использовалась теория конечноразмерного скейлинга [5]. Температура фазового перехода определялась из анализа кумулянтов Биндера четвертого порядка для намагниченности и энергии системы, а также графиков зависимости Магнитной восприимчивости и теплоемкости от температуры. Свободная поверхность и основной объем системы рассматривались как две взаимодействующие системы, для каждой из которых вычислялись термодинамические параметры.

Результаты компьютерного моделирования показывают, что явление поверхностного магнетизма оказывает существенное влияние фазовые переходы в тонких пленках с решеткой антиточек. Температура Кюри растет с увеличением поверхностного обменного интеграла. При этом скорость роста температуры фазового перехода зависит как от толщины пленки, так и от размера пор. При фиксированной толщине пленки решетка антиточек приводит к снижению температуры Кюри в материалах с низкой поверхностной энергией и повышению температуры Кюри для систем с поверхностной энергией. Явление поверхностного высокой упорядочивания, наблюдающееся в сплошных пленках, может исчезать при появлении пор. Построены фазовые диаграммы системы для пленок различной толщины с порами различного размера.

- [1] J. He, Z. Zhang, Z. Bao et al. Materials 15, 6789 (2022)
- [2] E. Cara, F. Ferrarese Lupi, M. Fretto et al. Nanomaterials 10, 280 (2020).
- [3] S.V. Belim, S.S. Belim, I.V. Tikhomirov, I.V. Bychkov, Coatings **12**, 1526 (2022).
- [4] M. Potthoff, W. Nolting, Phys. Rev. B **52**, 15341 (1995).
- [5] K. Binder. Phys. Rev. Lett. 47, 693 (1981).

Структуры основного состояния часовой модели с числом состояний спина q = 5 на треугольной решетке

<u>Бадиев М.К.,</u> Муртазаев А.К., Магомедов М.А. Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: m zagir@mail.ru

Часовые модели, выступающие в качестве обобщений моделей Изинга и Поттса, играют решающую роль в статистической механике и физике конденсированного состояния, особенно в изучении фазовых переходов и критических явлений. В то время, как модели часов с числом состояния спина (q = 2, 3, 4) были широко изучены, системы с числом состояний ($q \ge 5$) демонстрируют широкое разнообразие критического поведения, включая возникновение переходов Березинского-Костерлица-Таулеса (БКТ), различных фаз и мультикритических точек [1-5].

Следовательно, в данной работе исследуется часовой модель с числом состояний спина q=5 на треугольной решетке с учетом взаимодействий вторых ближайших соседей.

Гамильтониан исследуемой модели имеет следующий вид:

$$H = -J_1 \sum_{\langle i,j\rangle, i \neq j} (S_i \cdot S_j) - J_2 \sum_{\langle i,k\rangle, i \neq k} (S_i \cdot S_k) = -J_1 \sum_{\langle i,j\rangle, i \neq j} \cos \theta_{i,j} - J_2 \sum_{\langle i,k\rangle, i \neq k} \cos \theta_{i,k}$$
 (1)

где спиновые состояния q в узле i обозначены плоским углом $\theta_i = 2\pi k_i/q$, $k_i = 1, \ldots, q$, $J_1 < 0$ и $J_2 < 0$ — параметры антиферромагнитных обменных взаимодействий для первых и вторых ближайших соседей, $\theta_{i,j}$, $\theta_{i,k}$ — углы между взаимодействующими спинами $S_i - S_j$ и $S_i - S_k$. Величина взаимодействия вторых соседей менялась в интервале $-2.4 \le J_2 \le 0.0$.

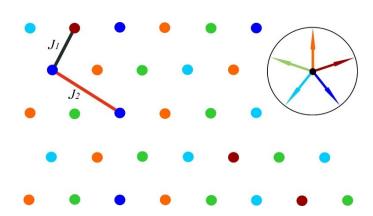


Рис.1. Магнитная структура основного состояния часовой модели с числом состояний спина q=5 на треугольной решетке.

Схематическое описание рассматриваемой модели представлено Ha 1. рис. вставке приведены направления для каждого из 5 состояний спина и соответствующее представление. цветовое Как видно на рисунке, у каждого спина есть шесть ближайших (линии черного цвета) и шесть вторых ближайших соседа красного (линии цвета).

Спины, обозначенные кружками одного и того же цвета, имеют одинаковое направление.

Расчеты проводились для систем с периодическими граничными условиями и линейными размерами $L \times L = N, L = 60 \div 180,$ где L- линейный размер решетки, N- количество спинов в системе.

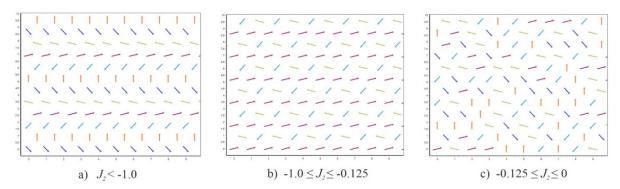


Рис.2. Магнитные структуры основного состояния, реализуемые в системе при различных значениях J_2 .

На рис. 2 представлены магнитные структуры основного состояния, полученные из спиновых конфигураций при температуре, стремящейся к нулю (T=0.01). В этом случае энергия этих конфигураций очень близка к минимальной, которая соответствует основному состоянию. При слабых взаимодействиях со вторыми ближайшими соседями и при J_2 = 0.0, модель демонстрирует сильное вырождение основного состояния (рис.2c). Это означает, что система имеет множество состояний с одинаково низкой энергией, что характерно для фрустрированных систем. Фрустрация возникает, когда взаимодействия между спинами системы конфликтуют, что делает невозможным достижение полностью упорядоченного состояния. В результате возникает множество различных конфигураций, каждая из которых имеет энергию близкую к минимальной.

При увеличении абсолютной величины антиферромагнитного взаимодействия вторых ближайших соседей в системе появляется упорядоченное состояние. В диапазоне от $-1.0 \le J_2 \le -0.125$ в системе появляется порядок. Как видно из рисунка, в одной подрешётке все спины ориентированы в одном направлении (рис.2b). Вторая подрешётка демонстрирует чередование направлений спинов.

При дальнейшем увеличении абсолютной величины антиферромагнитного взаимодействия, когда $J_2 < -1.0$, система переходит в состояние с другим типом упорядочения. Это состояние отличается тем, что находит одно устойчивое основное состояние, в котором все спины взаимодействуют одинаково.

Таким образом, изменение величины J_2 оказывает значительное влияние на структуры основного состояния системы. При $J_2 = 0$ система находится в вырожденном, фрустрированном состоянии с множеством возможных конфигураций. Но с увеличением антиферромагнитного

взаимодействия вторых ближайших соседей в системе возникает упорядочение.

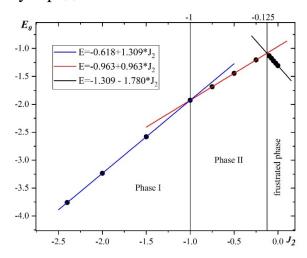


Рис.3. Зависимость энергии основного состояния от величины взаимодействия вторых ближайших соседей J_2 .

На рисунке 3 представлена зависимость энергии основного состояния от величины обменного взаимодействия вторых ближайших соседей.

Линиями графике на представлены расчетные значения энергии, полученные помощью гамильтониана (1).Точками представлены результаты численного эксперимента. Как мы видим из рисунка, результаты, полученные аналитически численным И экспериментом, хорошо накладываются друг на друга.

На рисунке 3 видно, что изменение величины J_2 приводит к появлению различных фаз в системе. Для $J_2 < -1.0$ в системе наблюдается фаза І. Этой фазе соответствуют магнитные структуры, представленные на рис. 2а. В интервале значений $-1.0 \le J_2 \le -0.125$ в системе наблюдается фаза ІІ. Этой фазе соответствуют магнитные структуры, представленные на рис. 2b. В интервале значений $-0.125 \le J_2 \le 0$ наблюдается фрустрированная фаза. Этой фазе соответствуют магнитные структуры, представленные на рис. 2c.

Таким образом, график демонстрирует три фазы: фаза I, фаза II и фрустрированная фаза. Переход между этими фазами обусловлен изменением величины обменного взаимодействия вторых соседей и сопровождается изменением энергии основного состояния системы.

Проведенное исследование позволило выявить важные особенности поведения часовой модели при различных значениях величины взаимодействия вторых соседей J_2 и температур.

Исследование выполнено в рамках научной программы НЦФМ (проект «Исследования в сильных и сверхсильных магнитных полях»), и за счет гранта Российского научного фонда № 25-12-20029.

- [1] J. Tobochnik, Phys. Rev. B 27, 6972 (1983).
- [2] Y. Tomita and Y. Okabe, Phys. Rev. B 65, 184405 (2002).
- [3] S. K. Baek, H. Makea, P. Minnhagen and B. J. Kim, Phys. Rev. E 88, 012125 (2013).
- [4] J. Chen, H.-J. Liao, H.-D. Xie, X.-J. Han, R.-Z. Huang, S. Cheng, Z.-C. Wei, Z.-Y. Xie, and T. Xiang, Chin. Phys. Lett. **34**, 050503 (2017).
- [5] S. Hong and D.-H. Kim, Phys. Rev. E 101, 012124 (2020).

Расчет относительных дисперсий намагниченности, теплоемкости и восприимчивости в двумерной слабо разбавленной четырехкомпонентной модели Поттса на гексагональной решетке

Атаева Г.Я., Бабаев А.Б., Муртазаев А.К.

Институт физики им. Х.И. Амирханова Дагестанского федерального исследовательского центра РАН, Махачкала, Россия e-mail: ataeva20102014@mail.ru

Тепловые и магнитные характеристики, а так же фазовые переходы (ФП) большинства изучаемых спиновых систем подвержены влиянию немагнитных примесей и дефектов структур, содержащихся в реальных объектах исследования [1-5]. Данная проблема актуальна более тридцати лет и активно исследуется с применением как теоретических и экспериментальных методов, так и с помощью методов Монте-Карло (МК).

На сегодняшний день известно о зависимости критических параметров от способа реализации беспорядка в исследуемой модели. Например, в [6,7] было обнаружено, что беспорядок, реализованный каноническим способом (фиксацией доли магнитных узлов), приводит к результатам, отличным от случая, когда беспорядок реализовался способом большого канонического типа (доля магнитных узлов в каждой примесной конфигурации флуктуирует). Хотя исследование [6], проведенные ренормгрупповыми методами, такое поведение объяснило различием конечно-размерных эффектов в этих двух типах разбавления. Другим важным вопросом при исследовании разбавленных систем является проблема самоусреднения термодинамических параметров в спиновых системах с беспорядком, поскольку этот вопрос затрагивает влияние микроскопических свойств системы на ее макроскопические свойства.

В связи с этим в данной работе нами исследуется проблема самоусреднения термодинамических критических параметров в четырехкомпонентной слабо разбавленной модели Поттса на гексагональной решетке методами Монте-Карло.

Модель Поттса с числом состояний спина q=4 на гексагональной решетке представлена на рис.1. Гамильтониан модели имеет следующий вид [8]:

$$H = -\frac{J}{2} \sum_{i,j} \delta(S_i, S_j), \quad S_i = 1, 2, 3, 4$$

$$\text{где } \delta(S_i, S_j) = \begin{cases} 1, & ecnu \ S_i = S_j, \\ 0, & ecnu \ S_i \neq S_j. \end{cases}$$
(1)

Расчеты проводились для систем с периодическими граничными условиями при концентрациях спинов p=1.0, 0.9. Исследовались системы с

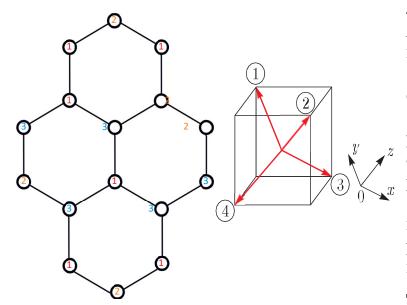


Рис.1. Модель Поттса с числом состояний спина q=4 на гексагональной решетке.

линейными размерами $L \times L = N$, $L = 12 \div 45$. Для вывода системы равновесное состояние отсекался неравновесный участок длиной τ_0 для системы с линейными размерами L. Затем усреднение проводилось ПО участку марковской цепи длиной $\tau = 400\tau_0$. Для самой большой L=45, системы $\tau=2\times10^5$ МК шагов/спин. Кроме

того, проводилось усреднение по различным начальным конфигурациям.

Для расчета относительных дисперсий (квадратов коэффициентов вариации) намагниченности R_m , восприимчивости R_χ и теплоемкости R_c при $T=T_c$ в зависимости от линейных размеров L исследуемой системы использовались выражения [6,7]

$$R_m = \frac{\overline{m^2(L)} - \overline{m(L)}^2}{\overline{m(L)}^2},\tag{2}$$

$$R_{\chi} = \frac{\overline{\chi^2(L)} - \overline{\chi(L)}^2}{\overline{\chi(L)}^2},\tag{3}$$

$$R_C = \frac{\overline{C^2(L)} - \overline{C(L)}^2}{\overline{C(L)}^2},\tag{4}$$

Численные данные для термодинамических параметров в критической точке T_c , рассчитанные по выражениям (2)–(4), позволяют судить о закономерности самоусреднения термодинамических величин и их погрешности в зависимости от L. Соответствующие значения R_m , R_χ и R_c представлены в таблице 1.

Таблица 1. Значения относительных дисперсий R_m , R_χ и R_c для слабо разбавленной модели Поттса с q=4 при p=0.90.

L	R_m	R_{χ}	R_c
12	0.00176	0.09489	0.01533
15	0.00164	0.09363	0.01781
21	0.00182	0.08131	0.01957
24	0.00131	0.07664	0.01652
45	0.00122	0.06682	0.01164

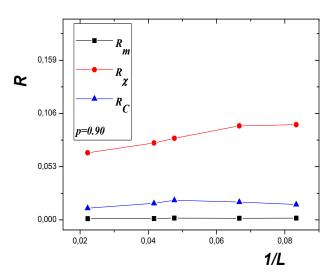


Рис.2. Относительные дисперсии R_m , R_χ , R_c в зависимости от 1/L.

На рисунке 3 показаны дисперсии R_m , R_χ , R_c в зависимости от 1/L. Видно, что с увеличением линейных размеров L значения R_m , R_χ , R_c заметно уменьшаются.

Таким образом, полученные данные свидетельствуют о следующем:

1. Внесение слабого беспорядка в виде немагнитных примесей в

четырехкомпонентную модель Поттса на гексагональной решетке приводит к отличным от нуля значениям для R_m , R_χ , R_c , что указывает на плохое самоусреднение исследуемых термодинамических параметров.

- 2. Полученные значения относительных дисперсий R_m , R_χ и R_c на гексагональной решетке качественно совпадают с аналогичными значениями, полученными для модели Поттса на квадратной решетке [9].
- 3. Выбор решетки для четырехкомпонентной двумерной модели Поттса существенно не влияет на относительные значения дисперсий R_m , R_χ , R_c .
- [1] V.S.Dotsenko, Critical phenomena and quenched disorder, Usp. Fiz. Nauk, 165, 481 (1995).
- [2] R.Folk, Y.Golovach, and T.Yavorsky, Adv. Phys. Sci., 173, 175 (2003).
- [3] A.B.Babaev and A.K.Murtazaev, Fiz. Nizk. Temp., 46, 818 (2020).
- [4] A.K.Murtazaev, A.B.Babaev, Materials Letters, 258 (2020).
- [5] O.Vasilyev, B.Berche, M.Dudka and Yu.Holovatch, Phys. Rev. E92, 042118 (2015).
- [6] S.Wiseman, E.Domany, Self-averaging, distribution of pseudocritical temperatures, and finite size scaling in critical disordered systems, Phys. Rev. E, v.58, p.2938 (1998).
- [7] S.Wiseman, E.Domany, Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems, Phys. Rev. Lett., v.81, p.22 (1998).
- [8] F.Y.Wu. Exactly Solved Models: A Journey in Statistical Mechanics, World Scientific, London, 641 p. (2009).
- [9] G.Y.Ataeva, A.B.Babaev, A.K.Murtazaev, Physics of the Solid State, Vol. 65, No. 7 (2023).

Моделирование критического поведения спиновых систем на примере сплава Гейслера CFAS

Мамонова М.В., Макеев М.Ю., Ковалева А.Ю.

Омский государственный университет им. Ф.М. Достоевского, Омск, Россия e-mail: mamonovamv@omsu.ru

Целью данного исследования является расчет критической температуры сплава Гейслера $Co_2FeAl_{0.5}Si_{0.5}$ CFAS.

Особое внимание к кобальтсодержащим сплавам Гейслера связано с их высокими температурами Кюри, превосходящими показатели многих других материалов. Изучение их структуры, механических и магнитных свойств, а также влияния различных факторов на их поведение является ключевым для дальнейшего развития и оптимизации этих материалов для практического применения. Сплав CFAS, благодаря оптимальному соотношению своих компонентов, формирует устойчивую кристаллическую структуру типа Гейслера.

В данной работе для определения критической температуры сплава Гейслера CFAS была использована трехмерная анизотропная модель Гейзенберга. Это одна из традиционных моделей статистической физики, используемых для описания фазовых переходов в самых различных спиновых системах. Рассматривалась трехмерная анизотропная модель Гейзенберга с замороженными дефектами и анизотропией типа «легкая ось». Гамильтониан анизотропной модели Гейзенберга с анизотропией типа «легкая ось», одноионной анизотропией, носящей легкоосный характер, и замороженными дефектами имеет вид:

$$H = -J\sum_{\langle i,j \rangle} p_i p_j [((1 - \Delta)S_i^x S_j^x + S_i^y S_j^y) + S_i^z S_j^z] - D\sum_i (S_i^z)^2, \quad (1)$$

где p_i — переменные, характеризующие замороженный структурный беспорядок в системе, D — параметр одноионной анизотропии (легкая ось).

Для осуществления первопринципных расчетов константы межатомного обменного взаимодействия J по методике, более подробно описанной в [1], применялся лицензионный программный пакет VASP[2] с использованием набора псевдопотенциалов и метода проекционноприсоединенных волн.

Цель данной работы — используя трехмерную анизотропную модель Гейзенберга, определить критическую температуру сплава Гейслера CFAS при различных значениях параметра анизотропии ($\Delta=0.1,\,0.3,\,0.63,\,D=3$) и спиновой концентрации (p=0.75). Была построена структура CFAS, содержащая 16 атомов: 8 атомов Со, 4 атома Fe, 2 атома Al, 2 атома Si. Таким образом, спиновая концентрация данной системы p=0.75.

Для нахождения значения критической температуры Tc проводилось компьютерное моделирование систем, стартовавших из низкотемпературного начального состояния. Усреднение проводилось по 10

примесным конфигурациям и по 10 прогонкам для каждой примесной конфигурации. Линейные размеры решеток L=16, 24, 32. На релаксацию и усреднение было выделено по 10000 MCs/s.

Для определения значения температуры фазового перехода Tc был использован метод кумулянтов Биндера четветого порядка U4. Суть этого метода заключается в построении температурных зависимостей кумулянтов для систем различных линейных размеров. Так, методом кумулянтов Биндера была определена критическая температура при p=0.75. На рис. 1 представлена температурная зависимость кумулянтов Биндера U4 для систем с анизотропией типа «легкая ось» с линейными размерами L=16,24,32 при $\Delta=0.1,0.3,0.63$.

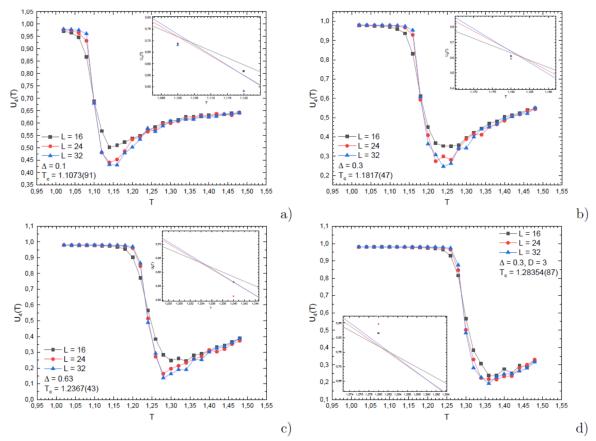


Рис. 1. Температурная зависимость кумулянтов Биндера для анизотропной модели Гейзенберга с p = 0.75 и параметром анизотропии а) $\Delta = 0.1$; b) $\Delta = 0.3$; c) $\Delta = 0.63$; d) $\Delta = 0.3$, D = 3

Температура измерялась в единицах обменного интеграла J/kB. Для nеревода в кельвины, подставим значения J, полученные для тонкопленочной системы CFAS/Ag/CFAS и объемного CFAS в модели среднего поля. Значение J=0.0524414 эВ получено для объемного CFAS, J=0.07728651 эВ — для пленки. Полученные значения критической температуры приведены в таблице 1.

Таблица 1 Критическая температура <i>Тс,К</i> для трехмерной модели	l
Гейзенберга с анизотропией «легкая ось». и $p = 0.75$ при различных f ,	эВ

	$\Delta = 0.1$	$\Delta = 0.3$	$\Delta = 0.63$	$\Delta = 0.3, D = 3$	Др.авторы
Tc, K	673.856	719.132	752.602	781.083	CFS(bulk)
(bulk)					$1100 \pm 20 [3]$
Tc, K	993.107	1059.834	1109.162	1151.136	CFAS/MgO
(film)					1150 ± 50 [4]

Таким образом, полученные значения критической температуры при J, соответствующих объемному CFAS, оказались заниженными по сравнению с значениями Tc, полученными другими авторами [3]. Однако значения, полученные при $\Delta = 0.3$, D = 3 и J для пленки, находятся в лучшем согласии с известными значениями критической температуры CFAS [4]. Можно отметить, что с увеличением параметра анизотропии критическая температура трехмерной структурно неупорядоченной модели Гейзенберга увеличивается. Введение одноионной анизотропии также увеличивает критическую температуру для систем с анизотропией «легкая ось».

- [1] Mamonova M.V., Makeev M.Yu., Journal of Siberian Federal University. Mathematics & Physics. **16(6)**, 773 (2023)
- [2] Kresse P. G., Furthmuller J., Phys. Rev. B **54**, 11169 (1996)
- [3] Ito W., Kainuma R., Imano Y., Nature, **439**, 957 (2006)
- [4] Vahidi M., Gifford J. A. et al., APL Mater., 2, 046108 (2014)

Секция В2

Материалы с памятью формы, магнитокалорические материалы, мультиферроики

Новые сложные ванадаты кальция-индия и кальция-европия со свинцом: нелинейно-оптические, сегнетоэлектрические, ионопроводящие свойства и люминесцентные свойства

<u>Галлямов Э.М.</u>, Вакшин А.И., Берсенев А.И., Барышникова О.В., Лазоряк Б.И.

Химический факультет МГУ имени М.В. Ломоносова, Москва, Россия e-mail: e.m.gallyamov@gmail.com

Аналоги трикальцийфосфата витлокитоподобной структуры активно исследуются в последние десятилетия [1]. Много работ посвящено фосфатам кальция, куда меньше - их ванадиевым аналогам. Из интересных свойств, проявляемых подобными соединениями, отметим нелинейнооптическую активность, сегнетоэлектричество, ионный транспорт, люминесценцию [2]. Перспективное привнесение свинца вообще не проводилось для сложных ванадатов кальция [3].

Были синтезированы образцы с общей формулой Ca_{9-x}Pb_xMe(VO₄)₇, где Me = In, Eu, керамическим методом. Проведен рентгенофазовый анализ, определены границы однофазности. Проведено исследование способности к генерации второй оптической гармоники и обнаружено значительное превышение кварцевого эталона. Методом диэлектрической спектроскопии определены температуры фазовых переходов и энергии активации ионного образцов, содержащих транспорта. Для европий, проведена люминесцентная спектроскопия, получены характерные картины люминесценции европия (III).

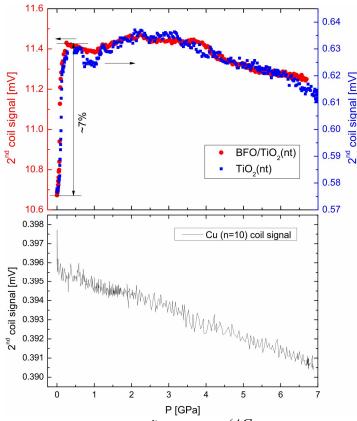
Таким образом установлено соответствие состав-структура-свойства для сложных ванадатов кальция-европия-свинца и кальция-индия-свинца. Обнаружено увеличение сигнала генерации второй оптической гармоники в 4-5 раз, значительное понижение температуры фазового перехода по мере привнесения свинца, а также облегчение ионного транспорта.

Работа выполнена при финансовой поддержке РНФ 24-13-00148 и в рамках государственного задания "Вещества и материалы для обеспечения безопасности, надежности и энергоэффективности" № АААА-А21-121011590086-0.

- [1] Б.И. Лазоряк, Успехи химии 65 (4), 307 (1996)
- [2] B. I. Lazoryak, A. A. Belik, E. M. Gallyamov, V. V. Titkov, S. Yu. Stefanovich, V. N. Maragaeva, D. A. Spassky, A. V. Mosunov, O. V. Baryshnikova, D. V. Deyneko, Mat. Res. Bul. **186**, 113349 (2025).
- [3] D. A. Beskorovaynaya, D. V. Deyneko, O. V. Baryshnikova, S. Yu. Stefanovich, B. I. Lazoryak, J. Alloys Compd. **674**, 323 (2016).

Измерения намагниченности пленки феррита висмута в условиях высокого давления

Арсланов Т.Р., Курбанов А.З.


Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: aldam.kurbanov@mail.ru

Соединение BiFeO₃ (BFO) является одним из наиболее изученных одновременно мультиферроидных материалов, обладающим сегнетоэлектрическими $T_C \approx 1100 \text{ K}$ и антиферромагнитными $T_N \approx 643 \text{ K}$ порядком при комнатной температуре [1]. Благодаря этому BFO представляет значительный интерес для применения в спинтронике, энергонезависимой резистивной памяти и магнитных датчиках. Однако практическое использование BFO ограничено высокой плотностью тока утечки, связанной с наличием кислородных вакансий и примесных фаз [2]. Одним из перспективных подходов к улучшению функциональных характеристик ВГО является создание гетероструктур с оксидами металлов, такими как ТіО2, обладающими высокой электронной подвижностью и фотокаталитической активностью. Комбинация BFO/TiO₂ уменьшить утечку тока за счет высокого сопротивления TiO2, усилить фотокаталитическую активность, а также реализовать новые эффекты благодаря эффективному разделению зарядов на границе раздела.

Магнитные свойства гетероструктур BFO/TiO₂ представляют особый интерес из-за возникновения на границе раздела неколлинеарных магнитных структур. Экспериментально наблюдалось появление обменного смещения (exchange bias) и индуцированного ферромагнетизма, связанного с нарушением спиральной магнитной структуры BFO вблизи интерфейса [3]. Теоретические расчеты предсказывают возможность формирования топологически защищенных магнитных структур, таких как скирмионы, в подобных гетероструктурах [4].

В настоящей работе представлены результаты исследования намагниченности гетероструктуры BFO/TiO_2 в условиях гидростатического давлении. Для данной системы примечательно, что диоксид титана образует наноструктурированную форму, то есть вступает в контакт с BFO в виде нанотрубок, которые могут проявлять неожиданные магнитные свойства, в то время как объемный TiO_2 является диамагнетиком.

Измерения намагниченности пленок BFO/TiO₂, полученных методом атомно-слоевого осаждения [5], проводилось в аппарате высокого давления Тороид-15 [6]. Намагниченность на переменном токе измерялась индукционным методом, адаптированным для пленок малых размеров $(2.8 \times 1.2 \text{ мм}^2)$. В качестве среды предающей давление использовалась смесь спиртов метанол-этанол в соотношении 4:1. Все измерения проводились в области комнатной температуры.

 $Puc.1\ 3$ ависимость сигнала вторичной катушки (AC намагниченности) от давления для гетероструктуры BFO/TiO_2 и TiO_2 . На нижней панели показано изменение выходного сигнала медной катушки без образца с числом витков n=10.

Результаты измерений намагниченности BFO/TiO₂, подложки TiO₂ и бифилярной катушки без образца (индукционного контура) представлены на рис. 1 в виде зависимости выходного напряжения вторичной катушки от давления. Как показано на вставке к рис. 1 (нижняя панель), фоновый сигнал катушки с начальным значение U_{out} =0.3955 мВ почти линейно убывает с ростом давления до 7 ГПа. Начальные значения U_{out} для BFO/TiO₂ и подложки TiO₂ составляют 1.0673 мВ и 0.577 мВ, соответственно. Как следует из рис. 1 (верхняя панель) поведение намагниченности BFO/TiO₂ и подложи TiO₂ с повышением давления в тоже время демонстрирует одинаковое поведение. Во-первых, на начальном этапе происходит резкое возрастание U_{out} , составляющее 7% при давлении P=0.25 ГПа. Далее изменение намагниченности происходит гораздо слабее и демонстрируют максимум при 2.2 ГПа с последующим монотонным убыванием до 7 ГПа. Для оценки магнитного поведения, связанного только со слоем ВFO в гетероструктуре, находилась разница между измеряемыми зависимостями:

$$U_{out}[BFO](P) = U_{out}[BiFeO_3/TiO_2](P) - U_{out}[TiO_2](P) - U_{out}[Cu(coil)](P)$$

Рисунок 2 показывает зависимость $U_{out}(P)$ для намагниченности, обусловленной слоем BFO. Данная зависимость отмечает аномалию в виде

пика при P=3.8 ГПа. Учитывая разменные свойства пленки ВFO (100 нм), эту аномалию можно ассоциировать с динамикой промежуточных фаз между структурным переходом R3с $\rightarrow Pnma$, как это наблюдалось в объемном феррите висмута [7]. Поведение намагниченности ВFO, таким образом, может являться признаком индуцированного давлением слабого магнетизма, обусловленного несколькими причинами: передачей спинового момента от Fe^{3+} (BFO) к Ti^{3+} /вакансиям (TiO_2), искажением кристаллической структуры в интерфейсе (по причине структурых изменений происходящих в ВFO [7]), нарушением спиральной структуры ВFO у границы раздела и изменением обменного взаимодействия.

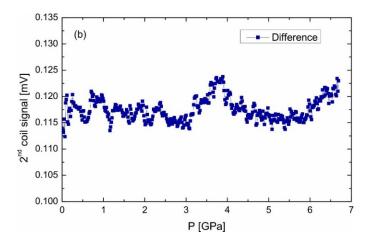


Рис. 2 Зависимость сигнала вторичной катушки для слоя BFO

Таким образом, нами выполнено экспериментальное исследование намагниченности системы BFO/ ${\rm TiO_2}$ до давлений 7 ГПа. На основании данных измерений выявлена динамика магнитного поведения, показывающая, что магнитные свойства пленки главным образом происходят от подложки ${\rm TiO_2}$ (в частности, 7% рост намагниченности при до 0.25 ГПа). В тоже время оценённый вклад в намагниченность, обусловленный слоем BFO, проявляется при P=3.8 ГПа.

- [1] J. Wang, J. B. Neaton, H. Zheng et al, Science 299, 1719 (2003).
- [2] R. Ramesh, N. A. Spaldin, Nature Materials 6, 21 (2007).
- [3] S. M. Wu et al, PRL 110, 067202 (2013).
- [4] A. Soumyanarayanan et al., Nature Mater. 16, 898 (2017).
- [5] Г. М. Гаджиев, Ш. М. Рамазанов, Н. С. Абакарова, Т. Н. Эфендиева, ФТТ **66**, 259 (2024).
- [6] L. G. Khvostantsev, V. N. Slesarev, V. V. Brazhkin, High Pressure Research **24**, 371 (2004).
- [7] Т. Р. Арсланов, С. Н. Каллаев, Л. А. Резниченко, Письма в ЖЭТФ **107**, 499 (2018).

Магнитные свойства и магнитоэлектрические явления в мультиферроиках $BiFe_{1-x}Zn_xO_3$

<u>Юсупов Д.М.</u>¹, Амиров А.А.¹, Chaudhari Y.А.², Bendre S.T.²

¹ Институт физики ДФИЦ РАН, Махачкала, Россия

² Department of Physics, School of Physical Sciences, North Maharashtra

University, Jalgaon, Maharashtra, India

e-mail: dibir.usupov@mail.ru

Соединения основе BiFeO₃ являются на очень перспективными мультиферроиковыми материалами из-за высокой температуры магнитных и сегнетоэлектрических фазовых переходов, плохой проводимости и простой структуры перовскита [1]. Они могут демонстрировать МЭ-эффект при комнатной температуре, но структура спин-циклоиды [1,2,3] подавляет этот эффект. Было описано несколько стратегий для разрушения этой структуры: приложение сильного магнитного поля, замещение Ві редкоземельными ионами в BiFeO₃, приготовление тонких пленок BiFeO₃ и т. д. Кроме того, замещение редкоземельных ионов приводит к увеличению композиционного беспорядка в системе, что может способствовать появлению новых слабоферромагнитных фаз [4].

Соединения BiFeO₃ являются наиболее известными и хорошо изученными мультиферроиками с высокими температурами фазовых переходов T_N ~ 643 K и Тс ~ 1083 К. Среди методов оптимизации магнитоэлектрических свойств и снижения тока утечки в последнее время используется механизм алиовалентного замещения ионов Fe³⁺ на B-узле перовскитной структуры ABO₃ BiFeO₃. В этом отношении использование немагнитных ионов Zn²⁺ для алиовалентного замещения ионов Fe³⁺ также будет интересным и перспективным для улучшения магнитоэлектрических свойств. Однако эффекты замещения Fe-узла на структуру BiFeO₃ и связь между электрическим и магнитным упорядочением до сих пор не были описаны. Хотя структурные, электрические и магнитные свойства мультиферроиков BiFeO3, легированных Zn, полученных различными методами, были описаны, информация о магнитоэлектрической связи ВіFeO₃, легированного Zn, на Fe-узле отсутствует. Поэтому, принимая во внимание эти проблемы, были приготовлены мультиферроичные керамики BiFeO₃ двухвалентным замещением Zn и исследованы их магнитоэлектрические свойства.

Керамические образцы мультиферроика $BiFe_{1-x}Zn_xO_3$ были приготовлены методом твердотельного сжигания для $x=0.05;\ 0.1;\ 0.15$ и 0,2. Были изучены структурные, магнитные и магнитокалорические свойства мультиферроиков. Для всех образцов наблюдается антиферромагнитный фазовый переход в области 630 К. С ростом x наблюдается уменьшение величины намагниченности и температуры Нееля. Мультиферроичность при комнатной температуре была подтверждена измерениями магнитоэлектрического коэффициента в зависимости от постоянного магнитного поля.

Работа выполнена в рамках государственного задания № FMSW-2025-0043

- [1] A.K. Zvezdin, A.P. Pyatakov, Sov. Phys. Usp. 47, 8 (2004).
- [2] A.G. Zhdanov et al., Sov. Phys. Solid State 48, 83 (2006).
- [3] A.M. Kadomtseva et al., Sov. Phys. JETP **79**, 705 (2004).
- [4] Z.V. Gabbasova et al., Phys. Lett. A 158, 491 (1991).

Одномерная модель охлаждающего устройства на основе магнитокалорического эффекта

Мальцев И.В., Бычков И.В., Кузьмин Д.А., Матюнина М.В.

Челябинский государственный университет, Челябинск, Россия e-mail: malts_iv@mail.ru; bychkov@csu.ru; kuzminda89@gmail.com, matunins.fam@mail.ru

Прошло почти полвека с момента создания первого прототипа охлаждающего устройства на основе твердотельного магнитокалорического (МК) материала, работающего при комнатной температуре [1]. С тех пор создано большое количество экспериментальных установок, работающих за счёт магнитокалорического эффекта (МКЭ) [2]. Высокий интерес к таким охлаждающим устройствам вызван потенциально высокой эффективностью: их КПД может достигать 30-60% против 5-10% у парокомпрессионных охлаждающих устройств [3]. Кроме этого, такая технология является более экологичной.

Магнитокалорические устройства (МКУ) обычно работают в режиме адиабатического изменения температуры, либо в режиме изотермической передачи тепла от магнетика при изменении магнитного поля. Этим режимам работы соответствуют термодинамические циклы Эриксона и Брайтона.

В данной работе мы рассмотрим цикл магнитного охлаждения простейшего магнитокалорического устройства (МКУ), работающего по циклу Брайтона, и нас будут интересовать временные интервалы передачи тепла после намагничивания/размагничивания МК материала.

Простейшая схема работы МКУ, использующего цикл Брайтона, состоит из следующих процессов (рис. 1):

- 1. Внесение рабочего тела (РТ) из МК материала в магнитное поле, его намагничивание и повышение температуры.
- 2. Соприкосновение РТ с горячим телом (ГТ) для отвода тепла (рис. 1, а). В это время происходит релаксация распределения температуры в холодном теле (ХТ).
- 3. Вынос РТ из магнитного поля приводит к размагничиванию и понижению температуры РТ.
- 4. Соприкосновение РТ с XT повышает температуру РТ (рис. 1, б). В это время происходит релаксация распределения температуры в ГТ.

В ходе численного расчёта работы МКУ для каждого шага решалось одномерное уравнение теплопроводности методом прогонки:

$$\rho c \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2},$$

где ρ — плотность, c — теплоёмкость, λ — коэффициент теплопроводности материала. Граничные условия для шага 2 (рис. 1, а) выбраны следующие: на левой границе РТ отсутствие потоков тепла, на

границе РТ и ГТ — равенство потоков тепла, на правой границе ГТ — фиксированная температура T_0 . Граничные условия для шага 4 (рис. 1, б): на левую границу ХТ: воздействует внешняя среда, на границе ХТ и РТ — равенство потоков тепла, на правой границе РТ — отсутствие потоков тепла.

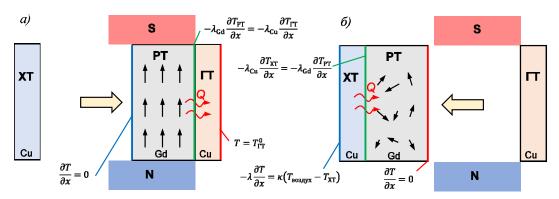


Рис. 1. Схема работы MKY и граничные условия для моделирования: а) отвод тепла от PT; б) отвод тепла от XT.

Материалы XT и ГТ должны иметь высокую теплопроводность, поэтому для них была выбрана медь. В качестве МК материала для РТ был выбран гадолиний, причём учитывалась температурная зависимость теплоёмкости Gd от температуры в магнитном поле ($\mu_0H=1.5$ Тл) и без него [4] (рис. 2, а). Зависимости величины МКЭ от температуры для Gd при намагничивании и размагничивании были взяты из эксперимента [5] (рис. 2, б).

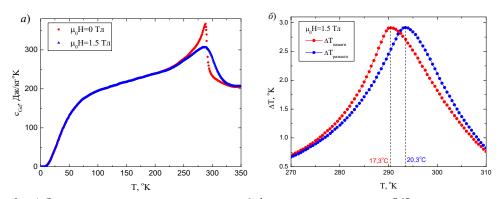


Рис. 2. а) Зависимость теплоёмкости Gd от температуры [4] в магнитном поле $\mu_0 H = 1.5 \, \text{Тл}$ (красная линия) и без него (синяя линия); б) зависимость величины МКЭ от температуры для Gd [5] в процессе намагничивания (красная линия) и размагничивания (синяя линия).

Для упрощения моделирования мы считаем, что время намагничивания и нагрева РТ пренебрежительно мало по сравнению со временем передачи тепла от РТ к ГТ и от ХТ к РТ.

В целях увеличения разности температур XT и ГТ мы также смоделировали схему с двумя рабочими телами и промежуточной медной пластиной – регенератором (рис. 3).

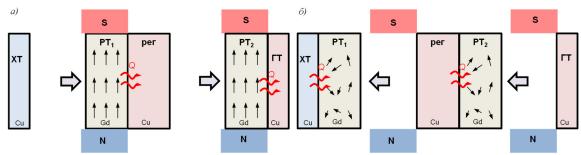


Рис. 3. Схема работы МКУ с двумя каскадами магнитного охлаждения: а) отвод тепла от PT_1 и PT_2 ; б) отвод тепла от XT и регенератора (рег).

В таблице 1 представлены результаты расчета минимальной T_{XT} для различных T_0 (и $T_{603\partial yx}$) для однокаскадной и двухкаскадной схем.

Tаблица 1. Pасчет минимальной T $_{XT}$ n $_{P}$ и различных начальных температурах T $_{0}$.

То, Твозд	17	18	19	20	21	22	23	24	25
$\Delta T_{ m XT}$	2,35	2,51	2,69	2,78	2,76	2,65	2,54	2,48	2,32
ΔT XT_2каскад									

Все $\Delta T_{\rm XT}$ для однокаскадной схемы не превышают величину МКЭ, а время соприкосновения РТ с XT и ГТ не превышало 1 с, что свидетельствует о необходимости создания и сохранения градиента температуры в РТ для достижения максимальной $\Delta T_{\rm XT}$. Добавление второго каскада охлаждения увеличивает $\Delta T_{\rm XT}$ $_{\rm 2\kappa ac\kappa ad}$ почти в 2 раза.

Таким образом, результаты данной работы показали, что для выбранной модели МКУ эффективным способом увеличения разницы температур между холодным и горячими телами является увеличение числа каскадов магнитного охлаждения.

Исследование выполнено за счет гранта Российского научного фонда № 25-19-20141, https://rscf.ru/project/25-19-20141/.

- [1] G.V. Brown. Int. J. Refrigeration 47, 3673–3680 (1976).
- [2] B. Yu, M. Liu, P.W. Egolf, A. Kitanovski. International Journal of Refrigeration, **33**(6), 1029-1060 (2010).
- [3] B.F. Yu, Q. Gao, B. Zhang, et al, Int. J. Refrig. **26**(6), 622-636 (2003).
- [4] S.Y. Dan'kov, A.M. Tishin, V.K. Pecharsky, et al, Phys. Rev. B **57**, 3478 (1998).
- [5] A.M. Tishin, Y.I Spichkin, The Magnetocaloric Effect and its Applications, Bristol, Philadelphia (2003).

Теоретический анализ химической устойчивости сплавов Гейслера семейства Ni-Mn-Ga

Соколовская Ю.А., Ерагер К.Р., Соколовский В.В., Бучельников В.Д. ¹ Челябинский государственный университет, Челябинск, Россия e-mail: sya2890@mail.ru

В настоящее время сплавы Гейслера представляют большой интерес во многих областях физики металлов и материаловедения в следствие их многообразных свойств. Одними из интересных свойств являются термо- и магнитоиндуцируемый эффекты памяти формы, которые тесно связан с феноменом мартенситного перехода между высокотемпературной фазой с кубической структурой и низкотемпературной фазой с тетрагональноискаженной структурой [1-3]. Низкотемпературную фазу, которая имеет более низкую симметрию, принято называть мартенситной фазой, тогда как высокотемпературную фазу – аустенитной фазой кубической симметрии. Большинство известных сплавов Гейслера проявляют магнитоупругую взаимосвязь, в частности известное соединение Ni₂MnGa является прототипом сплава с магнитным эффектом памяти формы.

Сплавы системы Ni-Mn-Ga на протяжении последних 40 лет остаются объектом активных экспериментальных и теоретических исследований. Интерес к этим материалам обусловлен широким спектром уникальных свойств, включая: кристаллическую структуру аустенитной и мартенситной магнитные характеристики (магнитосопротивление, магнитокалорический эффект, магнитодеформации), термомагнитоиндуцированные эффекты памяти формы, термомеханическое поведение и стабилизацию мартенситной фазы, влияние термообработки и легирования на функциональные свойства [1-3]. Такое многообразие свойств связано со сложной фазовой диаграммой Ni-Mn-Ga, согласно которой, структурные превращения могут индуцироваться изменением

температуры, магнитного поля или приложенного давления. Данная особенность делает сплавы Ni-Mn-Ga интересными объектами для фундаментальных и прикладных исследований.

На текущий момент наиболее изученные составы сплавов сосредоточены в относительно узкой области вблизи стехиометрического состава Ni₂MnGa. Как видно из рис. 1, подавляющее большинство

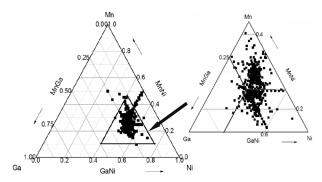


Рис.1 Тройная диаграмма сплавов Ni-Mn-Ga. Символы — наиболее исследуемые композиции (около 900), представленные в научных публикациях за 30-ти летний период [4].

исследованных композиций, описанных в литературе, локализованы именно в этой зоне [4]. Такая концентрация обусловлена высокой устойчивостью кубической структуры $L2_1$ вблизи стехиометрического соотношения. При отклонении от данной формулы состав может демонстрировать совершенно иные кристаллические и функциональные свойства.

В данной работе мы представляем теоретические исследования стабильности сплавов системы Ni-Mn-Ga тройную композиционным интервале, полностью покрывающем диаграмму. Формирование нестехиометрических композиций реализовано подхода 16 атомной суперячейки. Отметим, стехиометрическая композиция Ni₂MnGa в таком представлении может быть записана как Ni₈Mn₄Ga₄.

Таким образом, нестехиометрические составы сформированы путем ПО атомного замещения тех или иных атомов избыточные атомы. При этом, шаг по концентрации составляет 1 суперячейке, что соответствует шагу 6.25% в атомных долях. На рис. 2 возможное изображено максимально распределение рассмотренных в расчетах составов (105),покрывающих практически полностью тройную диаграмму. Расчеты электронной структуры выполнены с помощью пакета VASP, PAWиспользуя метод

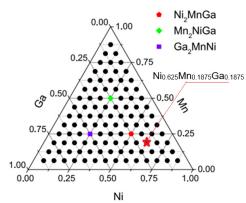


Рис.2 Набор составов Ni-Mn-Ga, сформированных на 16-ти атомной суперячейке. Для состава Ni0.625Mn0.1875Ga0.1875 далее по тексту приведены результаты.

псевдопотенциалов [5]. В качестве обменно-корреляционного потенциала выбрано приближение обобщенного градиента в формулировке Пердью-Бурке-Эрнзерхофа (РВЕ) [6].

Ранее нами было исследовано распределение равновесных параметров решеток, модулей всестороннего сжатия, магнитного момента и энергий формирования аустенитной и мартенситной структур, а также определены композиции со стабильным атомным упорядочением в аустенитной и мартенситной фазах [4,7,8]. В контексте химической стабильности будем полагать устойчивость того или иного состава по отношению к распаду на чистые элементы, стабильные двух- и трех компонентные соединения. Список стабильных соединений взят из базы данных "The Materials project" [9]. На рис. З приведен пример выпуклой оболочки энергетического фазового пространства семейства сплавов Ni-Mn-Ga.

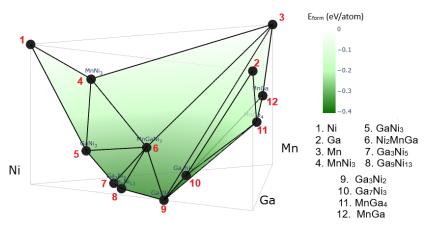
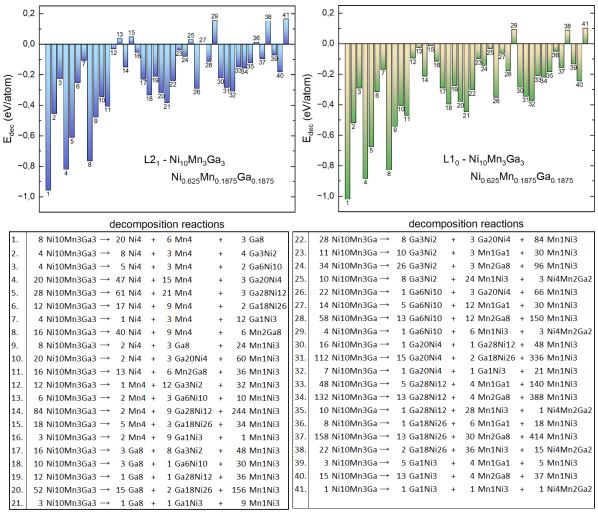


Рис.3 Выпуклая оболочка фазового пространства Ni–Mn–Ga. Узловые точки диаграммы – стабильные соединения согласно базе данных "The Materials Project" [9]. Цветовая шкала – распределение энергии формирования E_{form} , где E_{form} – разница между полной энергией сплава и суммой энергий составляющих его простых компонентов

Таким образом, анализ устойчивости к сегрегации сплавов проводили путем расчета энергии декомпозиции E_{dec} всех рассматриваемых соединений Ni-Mn-Ga по формуле:

$$E_{dec} = E_{tot} - \sum_{i=1}^{N} E_i^{Stable}, \tag{1}$$


где E_{tot} — полная энергия сплава, E_i^{Stable} — энергия всех вероятных стабильных компонентов распада в собственной кристаллической структуре, N — число компонентов распада. Отрицательное значение энергии декомпозиции указывает на устойчивость соединения, положительное — на нестабильность.

Чтобы изучить закономерности разложения исходного состава, были сгенерированы все возможные комбинации продуктов реакций, включая чистые элементы. Коэффициенты компонентов реакций определялись численным решением системы алгебраических уравнений (реакций) при условии положительных стехиометрических коэффициентов. В итоге для каждого из составов было найдено *п* возможных реакций разложения.

В качестве примера, рассмотрим состав $Ni_{10}Mn_3Ga_3$, отмеченный на рис. 2, для которого характерна 41 реакция распада. На рис. 4 представлено распределение энергии E_{dec} для каждой из реакций разложения сплава $Ni_{10}Mn_3Ga_3$ в кубической $L2_1$ и тетрагональной $L1_0$ фазах. Можно видеть, что для кубической фазы доля неустойчивых реакций составляет 19.5%, тогда как для тетрагональной фазы — 7.3%. Можно заключить, что понижение симметрии кристаллической решетки приводит к увеличению химической стабильности исходного соединения.

Схожие расчеты были выполнены для каждого из составов, отмеченных на рис. 2. Получены области распределения доли стабильных реакций распада ($E_{dec} < 0$), указывающих на устойчивость того или иного

состава Ni-Mn-Ga в кубической и тетрагональной фазах по отношению к распаду на комбинацию чистых элементов и стабильных соединений.

Puc.4 Значения энергии E_{dec} для состава Ni10Mn3Ga3 в кубической $L2_1$ и тетрагональной $L1_0$ фазах по отношению к возможному распаду на 41 реакцию.

Работа выполнена при поддержке государственного задания Министерства науки и высшего образования Российской Федерации (тема №~075-00186-25-00).

- [1] A.N. Vasil'ev et al., Physics Uspekhi **46**, 559 (2003).
- [2] P. Entel et al. J. of Phys. D: Appl. Phys. 39, 865 (2006).
- [3] T. Graf et al., Prog. Solid State Ch. **39**, 1 (2011).
- [4] Ю.А. Соколовская и др. ЖЭТФ **152**, 125 (2017).
- [5] G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- [6] J.P. Perdew et al. Phys. Rev. Lett. 77, 3865 (1996).
- [7] V. Sokolovskiy et al. JMMM 470, 64 (2019).
- [8] Y. Sokolovskaya et al. Metals 11, 973 (2021).
- [9] A. Jain et al. APL Mater. 1, 011002 (2013).

Подход в теоретическом описании сплава $Ni_{51-x}Mn_{33,4}In_{15,6}V_x$ (x= 0; 0,1; 0,3; 0,5; 1 ат. %) с учетом влияния магнитострикции

Морозов Е.В.¹, Карпухин Д.А¹, Коледов В.В.¹, Головчан А.В.² Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия Донецкий физико-технический институт им. А.А. Галкина, Донецк, Россия

В последние годы выходит очень большое количество публикаций, посвященных твердотельным фазовым переходам ($\Phi\Pi$) в интерметаллических сплавах.

Проблема связана с особенностями протекания процуссов системах, где возможно взаимодействием между двумя и более ФП, происходящими в одном кристалле. Цель работы — поиск теоретических подходов к решению этих задач в рамках феноменологической теории.

На графиках зависимостей M(T) (рис.1.) видно, что магнитоструктурный $\Phi\Pi$ 1-го рода и $\Phi\Pi$ 2-го рода в точке Кюри находятся рядом по температуре. Для описания используется функция свободной энергии Гельмгольца в разложении до четвертого порядка по деформации (ϵ) и намагниченности (M).

$$F(\varepsilon, M) = \frac{1}{2}a\varepsilon^{2} + \frac{1}{3}b\varepsilon^{3} + \frac{1}{4}c\varepsilon^{4} + \frac{1}{2}\alpha M^{2} + \frac{1}{4}\beta M^{4} + \frac{1}{2}NM^{2} + \frac{1}{2}B_{0}\varepsilon^{2}M^{2} + \frac{1}{2}B_{a}\varepsilon M^{2} - MH,$$

$$a = a_{0}(T - T_{s}),$$

$$\alpha = \alpha_{0}(T - T_{c}),$$
(1)

где α_0 , a, b, c — упругие модули; α_0 , α , β — магнитные модули; N — фактор размагничивания (формфактор); B_0 — объемная магнитострикция; B_a — анизотропная магнитострикция; H — внешнее магнитное поле; T_s и T_c — критические точки магнитоструктурного и магнитного $\Phi\Pi$.

Поскольку аустенитная фаза сплава $Ni_{51-x}Mn_{33,4}In_{15,6}V_x$ (x= 0; 0,1; 0,3; 0,5; 1 ат. %) соответствует кубическому ферромагнетику, то ε = 0 является одним из решений термического уравнения состояния:

$$\frac{\partial F}{\partial \varepsilon} = 0 \tag{2}$$

Напишем уравнение состояния с учетом (2):

$$\frac{\partial F}{\partial \varepsilon} = a_0 (T - T_s) \varepsilon + b \varepsilon^2 + c \varepsilon^3 + B_0 M^2 \varepsilon + \frac{1}{2} B_a M^2 = 0$$

Для соблюдения условия $\varepsilon=0$, получим, что $B_a=0$, т.к. d ферромагнитной фазе M>0. Т.е. для описания поведения сплава $Ni_{51-x}Mn_{33,4}In_{15,6}V_x$ (x=0;0,1;0,3;0,5;1 ат. %) будет корректно написание функции свободной энергии в виде:

$$\begin{split} F(\varepsilon,M) &= \frac{1}{2}\alpha_0(T-T_s)\varepsilon^2 + \frac{1}{3}b\varepsilon^3 + \frac{1}{4}c\varepsilon^4 + \frac{1}{2}\alpha_0(T-T_c)M^2 + \ \frac{1}{4}\beta M^4 \\ &+ \frac{1}{2}NM^2 + \frac{1}{2}B_0\varepsilon^2 M^2 - MH \end{split}$$

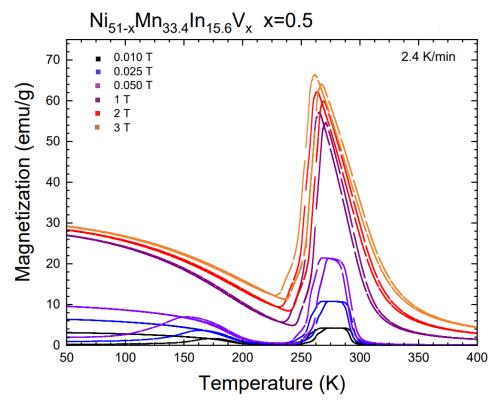


Рис. 1. Температурные зависимости намагниченности сплава Гейслера $Ni_{51-x}Mn_{33,4}In_{15,6}V_x$ при x=0,5 в разных магнитных полях

Авторами создан аналитический подход для расчета коэффициентов в разложении функции свободной энергии с выводом итогового выражения для каждого, а также произведен анализ устойчивости ФП 1-го рода для сплава $Ni_{51-x}Mn_{33,4}In_{15,6}V_x$ (x=0;0,1;0,3;0,5;1 ат. %).

Работа выполнена при поддержке гранта РНФ № 25-19-00942, https://rscf.ru/project/25-19-00942/ .

Стабильность адиабатического изменения температуры сплава La_{0.7}Ce_{0.3}Fe_{11.45}Mn_{0.2}Si_{1.35} при долговременном воздействии пиклических магнитных полей

<u>Абдулкадирова Н.З.</u>¹, Гамзатов А.Г.¹, Алиев А.М.¹, Li Y.², Wang J.², Hu F.²

¹ Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия

е-mail: nnurizhat@mail.ru

² State Key Laboratory of Magnetism, Institute of Physics, CAS, 100190, Beijing, China

Известно, что в магнитных холодильниках магнитный материал будет подвергаться длительному циклическому воздействию магнитного поля. Поэтому, в последние годы, исследования МКЭ в циклических магнитных полях представляют повышенный интерес. В отличие от классического метода измерений МКЭ (в основном ограничивающегося разовым вкл/выкл магнитного поля), исследование МКЭ в переменных магнитных полях методом модуляции магнитного поля, позволяют исследовать частотную и долговременную стабильность МКЭ при циклическом приложении магнитного поля. Сегодня в литературе [1-3] имеется информации о влиянии сотни тысяч циклов вкл/выкл магнитного поля на величину и на стабильность МКЭ.

В данной работе нами исследовано влияние частоты (1-20 Гц) циклического магнитного поля 1.2 Тл и долговременное воздействие циклического магнитного величину и на стабильность поля на адиабатического изменения температуры (ΔT_{ad}) $La_{0.7}Ce_{0.3}Fe_{11.45}Mn_{0.2}Si_{1.35}$. Результаты прямых измерений ΔT_{ad} в циклическом магнитном поле 1.2 Тл показывают, что увеличение частоты циклического магнитного поля от 1 до 20 Гц приводит к незначительному уменьшению величины эффекта примерно ~6.5 %, что является довольно хорошим результатом. Далее на данном сплаве нами было проведено исследование долговременного воздействие циклического магнитного поля 1.2 Тл при частоте 10 Γ ц на стабильность максимальной величины ΔT_{ad} . Образец демонстрирует стабильность величины МКЭ без признаков ухудшения вплоть до одного миллиона циклов вкл/выкл магнитного поля. Данный факт является привлекательным, с точки зрения перспективы применения данного материала в технологии магнитного охлаждения.

Работа выполнена за счет гранта Российского научного фонда, проект № 24-12-00156, https://rscf.ru/project/24-43-00156/.

- [1] A.G. Gamzatov, et.al, Rare Metals, 44, 4074 (2025).
- [2] A.M. Aliev, et.al., Int. J. Refriger, **151**, 146 (2023).
- [3] N.Z. Abdulkadirova, et.al., JALCOM, **929**, 167348 (2022).

Высокопроизводительный скрининг новых магнитных сплавов Гейслера на основе переходных металлов

Новокрещенов Д.В., Соколовский В.В.

Челябинский государственный университет, Челябинск, Россия e-mail: mavarleyne.chelgu@ya.ru

Сплавы Гейслера на оснвое переходных металлов обладают широким диапазоном разнообразных свойств, которые могут быть полезны в столь же широком диапазоне областей науки. К эти свойствам можно отнести магнитосопротивление, вариации эффекта Холла, ферро-, антиферро- и ферримагнетизм, полуметалличность, полупроводимость со способностью к спиновому фильтру, сверхпроводимость и термоэлектрические свойства. Сплавы Гейслера обладают также свойствами магнитной памяти формы и магнитострикции [1]. Такой набор возможных свойств делает сплавы Гейслера крайне перспективными для изучения и моделирования новых материалов первопринципными методами.

В настоящей работе проведены первопринципные расчёты массива сплавов Гейслера с формулой X_2YZ . Исследования проводились на базе данных, состоящей из 250 случайно сгенерированных соединений, каждое из которых рассматривалось в 4-х структурных упорядочениях: атомные упорядочения типа $L2_1$ и XA, и кубическая аустенитная (225 и 216 группы симметрии) и тетрагональная мартенситная (139 и 119 группы симметрии) фаза для каждого из них. Также для каждой отдельной структуры было составлено несколько возможных магнитных упорядочений. Общий размер начальной базы составил 2874 расчётных систем. данных Первопринципными расчётами получены характеристики основного состояния сгенерированных соединений, исследованы магнитные свойства с целью выявить сплавы с ненулевым магнитным моментом для расчёта параметров обменного взаимодействия, температуры Кюри моделирования намагниченности.

Исследование происходило по методике высокопроизводительных вычислений (High-Throughput), основой которой является составление большой базы данных и разумное отсеивание нерелевантных соединений в несколько этапов [2]. В данной работе отсеивание производилось на основе выгодности определённых структур, энергии формирования и типов магнитного упорядочения. На каждом этапе отбора большая часть систем обладала нулевым полным магнитным моментом, что соответствует парамагнитному или антиферромагнитному упорядочению.

Для расчёта температуры Кюри необходимы ферро- и ферримагнитные соединения с ненулевым полным магнитным моментом. В результате высокопроизводительного скрининга из начальной базы данных все этапы отбора прошли 13 соединений и несколько возможных структур для

некоторых из них. Таким образом температура Кюри была исследована для 17 расчётных систем.

В результате исследования получена температура Кюри в приближении ближнего поля и интегралы обменного взаимодействия для систем, прошедших все этапы отбора. На рис. 1 представлена зависимость температуры Кюри от полного магнитному момента, приходящегося на формульную единицу. В данной зависимости наблюдается некоторая корреляция, которую нарушают лишь 2 точки, одна из которых, вероятнее принадлежит антиферромагнитному упорядочению и соответствует температуре Нееля.

Исследование выполнено за счет гранта Российского научного фонда РНФ (№ 24-12-20016).

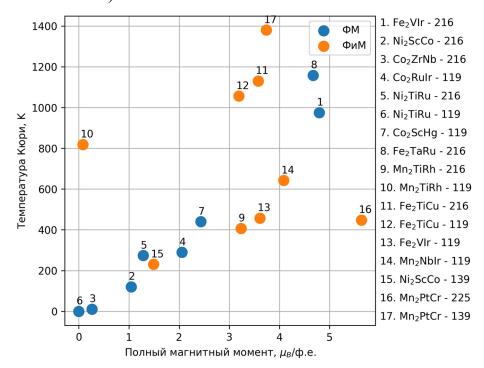


Рис. 1 Распределение температур Кюри в зависимости от полного магнитного момента.

- [1] Otsuka, K., & Wayman, C. M. (Eds.). (1998). Shape Memory Materials. Cambridge: Cambridge University Press.
- [2] Curtarolo, S., Hart, G., Nardelli, M. *et al.* The high-throughput highway to computational materials design. *Nature Mater* **12**, 191–201 (2013).

Моделирование магнитокалорического эффекта в LaFe_{13.7}Si_{1.3} в переменном магнитном поле

<u>Игошев П.А.</u>^{1,2}, Гамзатов А.Г.²

¹ Институт физики металов УрО РАН, Екатеринбург, Россия e-mail: igoshev_pa@imp.uran.ru

²Институт физики им. Х.И.Амирханова ДФИЦ РАН, Махачкала, Россия e-mail: gamzatov_adler@mail.ru

В последние годы большой интерес представляют исследования магнитокалорического эффекта (МКЭ) в периодически меняющемся во времени магнитном поле H(t) с частотой приближенной к рабочей частоте холодильников Для магнитных 0.1-20Γи. магнитокалорических материалов величина адиабатического изменения температуры $T_{\rm ad}$ уменьшается с ростом частоты f циклического магнитного поля [1]. Также обнаружено, что долговременное воздействие циклических полей приводит к подавлению (деградации) МКЭ, что существенно затрудняет их практическое применение. Причины этого затухания до сих пор не вполне ясны, а теория - лишь в стадии начальной разработки. частотно-деградационных Понимание природы свойств магнитокалорический материалов позволит синтезировать новые магнитокалорические материалы с контролируемыми свойствами.

Для экспериментального исследования был выбран зонный метамагнитный материал LaFe_{13.7}Si_{1.3} с хорошими магнитокалорическими характеристиками. В нулевом магнитном поле намагниченность испытывает скачок при $T_1 = 180$ K, но не до нуля, что объясняется вкладом в намагниченность от присутствующей сателлитной α -фазы железа, см. рис. 1.

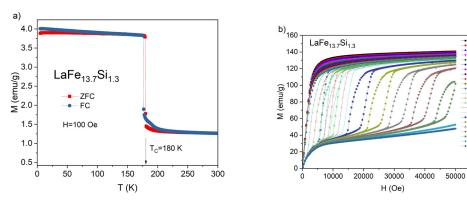


Рис. 1. Результат магнитных измерений для LaFe_{13.7}Si_{1.3}. (a) Намагниченность M как функция температуры в режимах ZFC, FC в поле H = 100 \Im ; (b) зависимость намагниченности M от магнитного поля H.

Для теоретического объяснения эксперимента применяется теория Ландау для свободной энергии

$$F(M,H) = F_0 + (1/2)A_2M^2 + (1/4)A_4M^4 + (1/6)A_6M^6 - HM,$$
 (1)

где M - намагниченность, с включением члена шестого порядка по намагниченности для описания метамагнитного перехода первого рода [3] для описания равновесных свойств LaFe_{13.7}Si_{1.3} - величины скачка намагниченности при $T_1 = 180$ K, величины критического поля при температуре исчезновения $T_2 = 208$ K и соответствующего критического поля $H_c = 6,5$ Тл. Предполагая линейную зависимость коэффициента второго порядка $A_2(T) = A_d(T - T_0)$, можно однозначно определить параметры функционала (1). Кроме того, учитывается наличия вклада сателлитной α -фазы железа в намагниченность и в МКЭ.

Для описания магнитного отклика на переменное магнитное поле H(t) мы применяли уравнение релаксации [2]

$$dM/dt = -\Gamma \partial F/\partial M,$$
 (2)

где Г - феноменологический коэффициент релаксации.

Представлены результаты для динамики намагниченности M(t), магнитного вклада в энтропию S(t) в зависимости от параметров (температуры и частоты). Показаны особенности динамики МКЭ, происходящие от метамагнитного перехода.

Исследование выполнено за счет гранта Российского научного фонда № 24-43-00156, https://rscf.ru/project/24-43-00156/.

- [1] A. M. Aliev, A. G. Gamzatov, Physics of Metals and Metallography, **125**(14), 1901 (2024).
- [2] R. M. Costa et al., J. Phys. D: Appl. Phys. 56, 155001 (2023).
- [3] Р. З. Левитин, А. С. Маркосян, УФН 155, № 8, С. 623–657(1988).

О возможности сверхизлучения при магнитных фазовых переходах в материалах с магнитокалорическим эффектом

фон Гратовски С.В., Коледов В.В.

Учреждение Российской академии наук Институт радиотехники и электроники им. В.А. Котельникова РАН e-mail: svtelana.gratowski@yandex.ru

Сверхизлучение (СИ)- это коллективное спонтанное когерентное излучение возбужденных атомов и молекул. Сверхизлучение можно использовать для генерации ультракоротких импульсов электромагнитного излучения в широком диапазоне длин волн - от радиоволн до гамма-излучения, а также для генерации пучков ядерных частиц. Коллективное спонтанное излучение многоатомной системы, или сверхизлучение было теоретически предсказано в [1]. И в 1973 году получило первое экспериментальное подтверждение [2]. Сверхизлучение представляет собой фундаментальное физическое явление, механизм которого объяснен теоретически и существование которого подтверждено многочисленными экспериментами. СИ вызывает большой интерес в научном сообществе, как в плане фундаментальных, так и прикладных исследований [3].

При сверхизлучении многоатомная система находится в когерентном состоянии. При этом согласованы фазы волновых функций отдельных атомов и их дипольных моментов. Необходимо заметить, что эффект СИ принципиально отличается от лазерной генерации. Для понимания этих отличий рассмотрим свойства СИ и свойства лазерного излучения.

Одной из основных черт лазерного излучения является сфазированность. Сфазированность приводит к когерентности лазерного излучения. Однако в лазерном излучении переход возбужденных атомов в более низкое или основное энергетическое состояние, в результате вынужденных излучательных переходов, в каждом атоме происходит независимо от других атомов, или индивидуально. Тем самым сами возбужденные атомы молекулы не находятся И в коллективном взаимодействии. Совершенно по-другому возникает сфазированность в свехизлучении. В сверхизлучении сфазированность является результатом коллективной сфазированности всех возбужденных центров. Снятие возбуждения в каждом возбужденном атоме или молекуле происходит не индивидуально, не независимо от других атомов или молекул, а представляет собой лавинообразный процесс. Поэтому коллективно, и можно сделать вывод, что СИ – это электромагнитное излучение среды как (макродиполя), сфазированного ансамбля состоящего микродиполей, взаимодействием через кооперативную волну, причем процесс этот носит лавинообразный характер.

После воздействия поля накачки, представляющего собой интенсивное внешнее поле, на среду, будет возникать инверсная населенность. В

результате возникновения инверсной населенности, будет происходить перекачка электрической энергии электромагнитного поля накачки в энергию поля поляризации. При этом, при высокой плотности инверсной населенности ΔN (более высокой, чем для лазерного излучения) кроме обычных электромагнитных волн в среде будут распространяются поляризационные волн. Энергия этих волн будет отрицательной. И эта отрицательная энергия будет сосредоточена в колебаниях поляризации (а не электрического поля, энергия которого относительно мала). Если поляризация будет происходить на резонансной частоте, то возникающие в поляризационные волны будут включать все микродиполи среды. При этом будет возникать единый сфазированный макродиполь. Как фазы поляризационных волн, так и энергия поля поляризации будут переходить в единый ансамбль, то есть возбуждения будут едиными для всех центров возбужденных атомов и молекул.

В инвертированных образцах с отражающими стенками результатом этих волн могут стать поляритонные моды, которые будут локализованны внутри образца. Если стенки образца имеют коэффициент отражения R < 1, то поляритонные моды выходят за его границы, но в виде обычной электромагнитной волны.

При излучении электромагнитных волн за пределы образца будет происходить уменьшение энергии поляритонной моды. Ввиду того, что поляритонная моды имеет отрицательную энергию, возникнет росту абсолютной величины амплитуды колебаний этой поляритонной моды. Это, в свою очередь будут вызывать дальнейшее нарастание амплитуды электромагнитного излучения. Таким образом будут возникать потери. Отсюда следует, что будет возникать диссипативная неустойчивость. В неограниченных образцах неустойчивость волн с отрицательной энергией может реализовываться если есть поглощение волн поляризации в данной среде. Таким образом, в неограниченных образцах и образцах с коэффициентом отражения границ образца R=1 возможен режим сверхпоглощения; в открытых же образцах с R < 1 реализуется режим сверхизлучения.

Из-за диссипативной неустойчивости будут возникать следующее явление: энергия волн поляризации будет переходить в электромагнитное излучение за время обратно пропорциональное образованию числа центров возбуждения $\tau 1 \sim (1/N)$, причем этот переход будет происходить лавинообразно. Отсюда следует, что интенсивность импульса сверхизлучения можно оценить как : $Wc \sim (\hbar \omega N)/\tau 1 = \hbar \omega (N)^2$, где $\hbar \omega N$ - энергия поля поляризации, в которую переходит энергия внешнего поля накачки. Из-за этого механизма СИ возникают отличия проявления СИ и лазерного излучения. И эти отличия заключаются в том, что в лазерном излучении интенсивность излучения пропорциональна числу центров возбуждения N, т.е. W лазера $\sim N$, в то время как для сверхизлучения

интенсивность излучения пропорциональна квадрату. Таким образом, СИ будет характеризоваться узконаправленным когерентным спонтанным излучением ансамбля возбужденных атомов или молекул, находящихся в коллективном состоянии Причем интенсивность будет пропорциональна квадрату их атомов или молекул, находящихся в коллективном состоянии. Таким образом, в случае СИ — это спонтанное когерентное излучение, это, как и в случае лазерного излучения - вынужденное когерентное излучение.

С конденсированных средах частицы всегда связаны между собой как через поле своего собственного излучения, так и через поле шумового фотонного фона. В некоторых случаях такая связь становится достаточно сильной, чтобы поле излучения и фотонного фона смогли привести частицы среды в единый ансамбль, или коллективизировать, так чтобы частицы в стали обладать общими энергетическими уровнями.

СИ принципиально отличаются OT лазерной генерации? Принципиальная разница возникает из-за различия внутренних свойств среды, например, полупроводниковой при лазерной генерации и при СИ. Оптическое излучение полупроводникового лазера является когерентным, тогда как сама полупроводниковая среда остается некогерентной. В отличие от лазерной генерации при генерации СИ как электромагнитное поле, так и электронно-дырочная система оказываются когерентными Возникает вопрос, возможно ли в полупроводниках при комнатной температуре сверхизлучение при фазовом переходе? В положительный ответ.

Возможно ли наблюдение сверхизлучения при фазовых переходах в средах? Доказано, например, что низкотемпературный магнитный фазовый переход в ErFeO₃ при критической температуре около 4 К является равновесным СРПФ, достигаемым за счёт связи между Fe₃+ И Er_3+ . C магнонами спинами помощью терагерцовой магнитоспектроскопии и экспериментов по намагничиванию, показано, что кооперативная сверхсильная магнонно-спиновая связь вызывает фазовый переход (ФП). В отличие от предыдущих исследований неравновесных магнонных фазовых переходов в атомных системах, вызванных лазером, магнонный фазовый переход в ErFeO3 происходит в условиях теплового равновесия в соответствии с изначально предполагаемым магнонным фазовым переходом, что приводит к уникальному основному состоянию гибридной системы в режиме сверхсильной связи [5].

В настоящем докладе высказывается гипотеза, что в магнитокалоричеких материалах при определенных условиях возможно существование СИФП, так как магнитный порядок предполагает обмен, то есть квантовую корреляцию носителей магнитного момента. Обсуждаются экспериментальные подходы к решению задачи поиска СИФП в магнитокалорических материалах с магнитными ФП первого и второго рода.

Работа выполнена в рамках госзадания ИРЭ им. В.А.Котельникова РАН.

- [1] Dicke R. Coherence in spontaneous radiation processes Phys. Rev., 1954, v. 93, N1, p. 99-110.
- [2] Skribanowitz, N., Herman, I. P., MacGillivray, J. C., & Feld, M. S. (1973). Observation of Dicke superradiance in optically pumped HF gas. Physical Review Letters, 30(8), 309.
- [3] Леонова, О. О., Ульяненко, С. Е., & Трыков, О. А. (2013). Возможности использования феномена сверхизлучения для задач лучевой терапии. Интернет-публикация www. oxleo. narod. ru.
- [4] Васильев П. П. "Сверхизлучающий квантовый фазовый переход в полупроводнике при комнатной температуре: миф или реальность?" УФН 195 557–564 (2025).
- [5] Bamba, M., Li, X., Marquez Peraca, N., & Kono, J. (2022). Magnonic superradiant phase transition. Communications Physics, 5(1), 3.

Экспериментальная методика для исследования кинетики, магнитных и термодинамических параметров в магнитокалорических материалах

<u>Карпухин Д.А.</u> ¹, Морозов Е.В. ¹, Коледов В.В. ¹, Каманцев А.П. ¹, Мусабиров И.И. ², Алиев А.М. ³, Гамзатов А.Г. ³, Абдулкадирова Н.З. ³, Таскаев С.В. ⁴, Шандрюк Г.А. ⁵, Терешина И.С. ⁶

¹ Институт радиотехники и электроники им. В.А.Котельникова РАН, г. Москва, Россия

e-mail: interceptor1986@mail.ru

- ² Институт Проблем Сверхпластичности Металлов РАН, Уфа, Россия e-mail: irekmusabirov@imsp.ru
- ³ Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия e-mail: lowtemp@mail.ru
- ⁴ ФГБОУ ВО "Челябинский государственный университет", Челябинск, Россия e-mail: s.v.taskaev@gmail.com
- ⁵ Институт нефтехимического синтеза им. А. В. Топчиева РАН, г. Москва, Россия e-mail: gosha@ips.ac.ru
- ⁶ Московский государственный университет имени М.В. Ломоносова, Москва, Россия e-mail: irina tereshina@mail.ru

На сегодняшний день большое количество работ посвящено изучению физических эффектов при фазовых переходах (ФП) в твердотельных материалах. Среди огромного разнообразия твердотельных материалов с ФП можно выделить магнетики, в которых, магнитные ФП сочетаются и взаимодействуют со структурными ФП. Анализ современной литературы показывает, что кинетика процессов при ФП исследованы слабо. Изучение материалов в неустойчивом состоянии, вблизи ФП затруднено отсутствием стандартных методов измерения термодинамических параметров вещества in situ, то есть в динамике, непосредственно в процессе $\Phi\Pi$ под воздействием сильных нестационарных полей. Разработка новых методов изучение кинетики ФП открывает возможности для изучения физических процессов при ФП и прикладного использования новых функциональных материалов с ФП в технологии сенсоров и актюаторов, приборостроении, при создании твердотельных холодильников и тепловых насосов для альтернативной энергетики и др. с повышенным быстродействием и мощностью.

Изучение магнитокалорического эффекта (МКЭ) в твердых телах под воздействием сильных переменных полей признано перспективным для создания новой технологии эффективных твердотельных холодильников. Наибольший интерес вызывают материалы, обладающие «гигантским» МКЭ со связанными магнитоструктурными ФП. Уравнения состояния материала вблизи ФП имеют аномалии, описывающие МКЭ. В работе [1] в ряде перспективных магнитокалорических материалов со связанными ФП обнаружен эффект резкой зависимости МКЭ от частоты переменного

сильного магнитного поля. Вопрос об адекватной интерпретации этого эффекта остается актуальным.

Цель настоящей работы заключается в экспериментальном и теоретическом изучении зависимостей температуры и намагниченности от времени на примерах гадолиния и сплава Гейслера $Ni_{50,5}Mn_{33,4}In_{15,6}V_{0,5}$ с магнитоструктурным $\Phi\Pi$ в нестационарных магнитных полях порядка 1 Тл.

Для исследования кинетики МКЭ использована методика, описанная в [1], для исследования кинетики намагниченности вблизи магнитного фазового перехода образца сплава $Ni_{50,5}Mn_{33,4}In_{15,6}V_{0,5}$ в импульсных полях была создана оригинальная установка (см. рис.1 (а)), на которой были сняты временные зависимости намагниченности образца при различных магнитных полях H (см. рис.1 (б)).

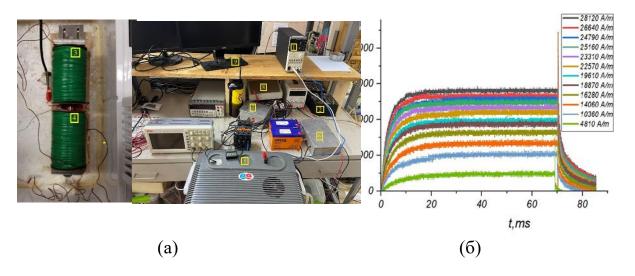


Рис.1. Экспериментальное исследование кинетики намагниченности в импульсных магнитных полях вблизи точки Кюри. (а) Общий вид экспериментальной установки. (б) Временные зависимости намагниченности образца при различных магнитных полях H.

Экспериментальная установка включает блок питания суперконденсатор (2), которые обеспечивают подачу импульсов напряжения от 0 до 60 В и ток до 40 А на катушку (3), создающую магнитное поле, исследуемый образец (4) в виде бруска и помещенный на его торце быстродействующий датчик Холла для измерения магнитного момента, а также термопару для измерения его температуры. Для поддержания необходимой температуры образца используется блок термостатирования (5). Для усиления сигнала от датчика Холла используется операционный малошумящий, быстродействующий усилитель (6). С помощью блока управления (7) происходит генерация прямоугольного импульса магнитного поля с напряжённостью до 1 Тл переменной длительности от 1 сек до 10 мкс. Для снятия и обработки сигнала применяется плата ЦАП/АЦП L-Card (8). Окончательный анализ, обработка и вывод данных производится при помощи ПК (9).

Созданная установка позволяет определить зависимость M(T), включая нахождение точки Кюри и температур магнитоструктурного перехода. Разрабатывается метод нахождения формы временного отклика намагниченности M(t) и, в конечном счете, проверки справедливости уравнения Ландау-Халатникова и нахождения константы γ , показывающей скорости фазового перехода в точке $\Phi\Pi$ в зависимости от амплитуды и формы импульсов поля H(t).

Для теоретического анализа кинетики процессов при протекании, связанных магнитных и структурного $\Phi\Pi$, делается предположение, что кинетика намагниченности определяется более медленной структурной подсистемой, что описывается системой уравнений Ландау-Халатникова вблизи точек $\Phi\Pi$:

$$\frac{d\eta}{dt} = -\gamma \left(\frac{dF}{d\eta}\right) \tag{1}$$

где η — параметры порядка ε и M, где ε - относительная деформация, M - намагниченность образца, γ — положительный коэффициент.

Это означает, что в принятой модели только константа γ показывает скорость протекания процессов при изменении параметра порядка. То есть в этом приближении, изучении кинетики процессов сводится к нахождению $\gamma_{\rm M}$ и $\gamma_{\rm E}$.

$$\frac{dM}{dt} = -\gamma_{\rm M} \left(\frac{dF}{dM} \right) \tag{2}$$

$$\frac{d\varepsilon}{dt} = -\gamma_{\varepsilon} \left(\frac{dF}{d\varepsilon} \right) \tag{3}$$

Для изучения термодинамических свойств образцов при ФП первого и второго рода используем разложение функции свободной энергии Гельмгольца методом Ландау до четвертого порядка:

$$F(\varepsilon,M) = \frac{1}{2}a\varepsilon^{2} + \frac{1}{3}b\varepsilon^{3} + \frac{1}{4}c\varepsilon^{4} + \frac{1}{2}\alpha M^{2} + \frac{1}{4}\beta M^{4} + \frac{1}{2}NM^{2} + \frac{1}{2}B_{0}\varepsilon^{2}M^{2} - M$$

$$a = a_{0}(T - T_{s})$$

$$a = a_{0}(T - T_{c})$$
(4)

$$\begin{cases} \frac{d\varepsilon}{dt} = -\gamma_{\varepsilon} (a\varepsilon + b\varepsilon^{2} + c\varepsilon^{3} + B\varepsilon M^{2}), \\ \frac{dM}{dt} = -\gamma_{M} (\alpha M + \beta M^{3} + NM + B\varepsilon^{2}M - H(t) \end{cases}$$
 (5)

 нестационарное внешнее поле, T — текущая температура, T_c — температура Кюри, T_s — температура структурного фазового перехода B_0 -коэффициент объемной магнитострикции.

На рис.2. изображены графики зависимости намагниченности от времени в гадолинии при включении и отключении магнитного поля в точке Кюри и теоретическая модель. Совпадение экспериментальных и данных для M(t) b H(t) говорит о том, что γ не определено. Поскольку, следовательно максимальная скорость $\Phi\Pi$ 2-го рода в чистом гадолинии соответствует приборной функции источника поля, т.е., $3 \cdot 10^3 \frac{1}{c}$. Значит максимальная частота $\Phi\Pi$ для гадолиния – не менее 3 к Γ ц [2].

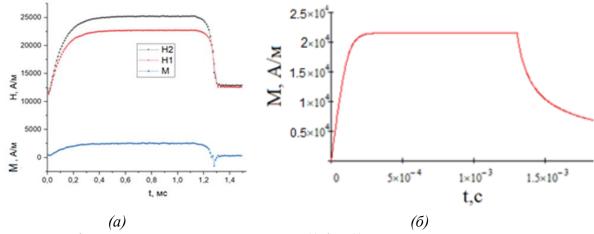


Рис. 2. Графики зависимости магнитной M(t) b Y(t) для чистого гадолиния в точке Кюри, Tc = 290,5 K. (a) эксперимент, (б) модель.

Таким образом получив значения γ , так как размерность $[\gamma] = c^{-1}$, то есть частота, показывающая оценку снизу для максимальной скорости $\Phi\Pi$ второго рода в гадолинии.

Дальнейшие усилия должны быть направлены на решение системы уравнений (4, 5) и отработку экспериментальной методик для прямого измерения временных зависимостей МКЭ и М(t) в нестационарных полях в различных материалах с различным сочетанием ФП. Это позволит приблизиться к решению проблемы адекватной трактовки обнаруженных ранее эффектов [1].

Исследования выполнены за счёт гранта Российского научного фонда № 25-19-00942, https://rscf.ru/project/25-19-00942/

- [1] Aliev A. M., et al., J. Al. Com.676, **601**–605 (2016).
- [2] Шавров В.Г. и др. // ФММ. 2024. Т. 125. №. 14. С. **1927**

Скейлинговый анализ адиабатического изменения температуры в редкоземельных металлах Gd, Tb и Dy

Алиев А.М.

Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия e-mail: lowtemp@mail.ru

Скейлинговый анализ при изучении магнитных фазовых переходов позволяет установить ключевые закономерности, связанные с критическими явлениями. Скейлинговый анализ можно применить и при исследовании магнитокалорического эффекта.

Изменение энтропии ΔS можно выразить через скейлинговую функцию:

$$S(T,H) \sim |T-T_C|^{-\alpha} f\left(\frac{H}{|T-T_C|^{-\Delta}}\right),$$

где $\Delta = \beta + \gamma$ – критический показатель, а f - универсальная функция.

Измеряя ΔT или ΔS при различных H и T, можно построить скейлинговые коллапсы (универсальные кривые МКЭ), которые могут подтверждать универсальность критических показателей для различных материалов, без непосредственного вычисления критических показателей. Скейлинговый анализ позволяет также экстраполировать полученные в узком диапазоне H и T, на более широкие области, помогает выявить природу фазового перехода (например, второго рода) и оценить Тс, а. Скейлинговый анализ МКЭ — мощный инструмент для изучения материалах. критических явлений В магнитных Он микроскопические взаимодействия с макроскопическими свойствами, что важно для разработки технологий магнитного охлаждения и понимания фундаментальной физики фазовых переходов.

В данной работе проведен скейлинговый анализ магнитокалорического эффекта (адиабатического изменения температуры) в редкоземельных металлах Gd, Tb и Dy в слабых переменных магнитных полях. Показано, что построение универсальных кривых МКЭ позволяет определить область температур и магнитных полей, в которых меняется механизм магнитокалорического эффекта.

Работа выполнена при поддержке РНФ, проект № 24-12-00362.

Мультикалорические материалы и эффекты: от фундаментальных основ к практическим приложениям

<u>Амиров А.А.</u>^{1,2}

¹Университет науки и технологий МИСИС, Москва, Россия ²Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: amiroff a@mail.ru

Мультикалорическим эффектом называется явление, заключающееся в обратимом изменении температуры (или энтропии) вещества под воздействием двух или более внешних полей (магнитное, электрическое, механическое напряжение) в адиабатических (или изотермических) условиях. Объекты, демонстрирующие мультикалорические эффекты, называются мультикалорическими материалами (или мультикалориками) и относятся к мультиферроидным структурам, в которых сосуществуют известные типы ферроупорядочений (ферромагниное, сегнетоэлектрическое и сегнетоупругое).

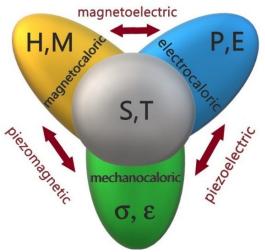


Рисунок 1. Схематическое изображение мультикалорического эффекта [1].

В докладе освещаются основные результаты, полученные автором по изучению мультикалорических эффектов в мультиферроидных структурах. Мультикалорические материалы систематизированы на основе общепринятых и устоявшихся классификаций, в том числе применяемых к мультиферроикам и композитным материалам. Проведена систематизация мультикалориков с применением двух подходов: по виду приложенного поля и по их структуре. Сделан обзор мультикалорических эффектов как в «природных» мультикалориках (однофазных системах), которые они демонстрируют под действием внешних сил различной природы, так и в искусственно созданных композитах, состоящих из двух компонент: магнитной и сегнетоэлектрической. При этом рассмотрены разные технологические подходы к созданию композитных мультикалориков, отличающихся типом связности их компонент, для них были описаны

перспективы применения для конкретных практических задач. Представлены различные стратегии получения мультикалорических материалов и наблюдения мультикалорических эффектов в них.

Особое внимание уделено на демонстрации новых экспериментальные подходов в исследовании калорических и мультикалорических эффектов под комбинированным воздействием различных внешних полей, а также демонстрации прикладных возможностей мультикалорических материалов для различных приложений: от стрейнтроники до биомедицины, которые были реализованы докладчиком [2-4].

Работа поддержана грантом Российского научного фонда (проект № 24-19-00782).

- [1] A.A. Amirov, A.M. Tishin, O.V. Pakhomov, Physics of the Solid State 4, 305 (2022).
- [2] A. Amirov and D. Samsonov, J. Appl. Phys. **136**, 053902 (2024).
- [3] A. Amirov et. al. J. Appl. Phys. **136**, 13903 (2024).
- [4] A. Amirov et. al. ACS Appl. Eng. Mater. **3(2)**, 410 (2025).

Термодинамические свойства композита (1-x) CoFe₂O₄-xPbTiO₃

<u>Каллаев С.Н.</u> 1 , Омаров З.М. 1 , Абдулвахидов К.Г. 2 , Билалов А.Р. 1 , Абдуллаев Х.Х. 1

¹Институт физики им. Х.И. Амирханова Дагестанского федерального исследовательского центра РАН, Россия, 367005 Махачкала, ул.М.Ярагского 94 ²Южный федеральный университет, Ростов-на-Дону, Россия E-mail: kallaev-s@rambler.ru

Поиск новых мультиферроиков связан с их особыми свойствами, связанными с одновременной реализацией электрической и магнитной структуры, которые имеют высокий прикладной потенциал многофункциональных устройствах (спинтроника, использования элементы памяти, магнитные датчики и др.) [1,2]. Одним из направлений улучшения магнитоэлектрических свойств является композитов на основе магнитных и сегнетоэлектрических материалов системы. Разработка композитов сильно мотивирована потребностью современной электроники в новых соединениях со свойствами, которые недоступны в однофазных материалах, а также в получении материалов с улучшенными характеристиками. В этом плане представляет интерес для исследований система (1-x) CoFe₂O₄-xPbTiO₃(CF-PT), полученный путем объединения феррита и сегнетопьзоэлектрика. Ни пьезоэлектрическая, ни магнитная фаза не имеют МЭ-эффекта, но композиты из этих двух фаз обладают заметным МЭ-эффектом [3]. Таким образом, МЭ-эффект является результатом продукта магнитострикционного и пьезоэлектрического эффектов. В данной работе представлены результаты калориметрических и магнитных исследований керамических композитов СF-РТ различного состава в широкой области температур.

Исследуемые в данной работе образцы CF-PT были получены твердофазным методом. По результатам рентгенофазового анализа, электронной микроскопии и элементного анализа установлено, что твердофазное спекание шпинели $CoFe_2O_4$ и сегнетоэлектрика $PbTiO_3$ сопровождается образованием дополнительной фазы — гексаферрита $PbFe_{12}O_{19}$ (T_N =710K). Поэтому мы имеем дело не с «чистыми» композитами, а с гетерофазными составами в данной работе.

Измерение теплоемкости проводилось на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix® фирмы NETZSCH. Магнитные свойства исследовались с помощью вибрационного магнитометра LakeShore VSM 7404.

Экспериментальные результаты исследований теплоемкости C_p мультиферроидного композита (1-х) $CoFe_2O_4$ -х $PbTiO_3$ (x=0.0, 0.10, 0.40, 0.70) в интервале температур 150-820К представлены на рис.1. На

температурной зависимости Ср ферромагнетика СоFe₂O₄ (x=0.0) наблюдается λ -аномалия характерная для ферромагнитного фазового перехода при температуре T_c =793 К. Температуры переходов, определенные по характерным для фазовых переходов λ -аномалиям для различных составов x=0.0, 0.10, 0.40, 0.70 составляли, соответственно, 793 К, 791 К, 747 К и 744 К, т.е. при добавлении сегнетоэлектрика титаната свинца к

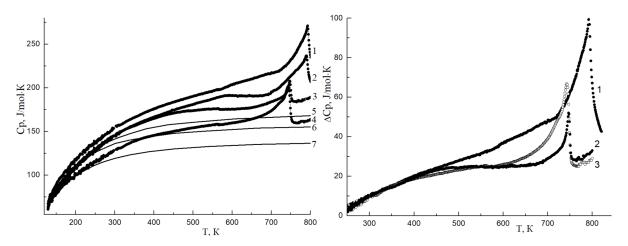


Рис.1. Температурная зависимость:а- теплоемкости Cp; b- аномальной составляющей теплоемкости мультиферроидного композита (1-x) $CoFe_2O_4$ - $xPbTiO_3$ различного состава: x = 0.0(1), 0.10(2), 0.40 (3), 0.70 (4); результаты аппроксимации фононной теплоемкости функцией Дебая для x = 0.0(5), 0.40 (6), 0.70 (7).

ферромагнетику ферриту кобальта температура фазового перехода (ФП) понижается в область низких температур на 49К. С уменьшением содержания СоFe₂O₄ заметно уменьшается величина теплоемкости Ср (и теплота ФП). В большинстве случаев для количественного анализа температурной зависимости теплоемкости и разделения фононного и используется простая вкладов модель, фононную теплоемкость функций Дебая $C_p^0 \sim D(\Theta_D/T)$, где Θ_D - температура Дебая. Результаты анализа наших данных по теплоемкости CF-PT показывают, что величина температура Дебая уменьшается от Өр≈610К для состава с x=0.0 и до $\Theta_D \approx 542 \text{K}$ для состава с x=0.70. Известно, что температура Дебая зависит от величины сил связи между ионами в кристаллической решетке. Поэтому понижение Θ_D при добавлении титаната свинца к ферриту кобальта свидетельствует о том, что силы связи между ионами кристаллической решетки при этом ослабевают. Температурная зависимость аномальной теплоемкости $\Delta C(T)$ показана на рис.2. Как видно их рисунка с добавлением второй компоненты избыточная теплоемкость уменьшается и это, по-видимому, связано с уменьшением концентрации ионов (кобальта, железа), переходы между уровнями которых приводит к появлению данной компоненты теплоемкости, а также вследствие искажения параметров решетки за счет возникновения трех сосуществующих фаз (структур) [4].

Как видно на рис.3 величина изменения энтропии CF-PT в области фазового перехода составляет Δ S>0.4 R. Эти значения энтропий перехода намного больше, чем у типичного фазового перехода типа смещения. Этот факт указывает на то, что заметную роль в формирование низкотемпературной фазы играют процессы типа порядок-беспорядок, связанные с упорядочением ионов свинца и кобальта ниже температуры перехода.

На рис. 4 представлена фазовая диаграмма зависимости температуры

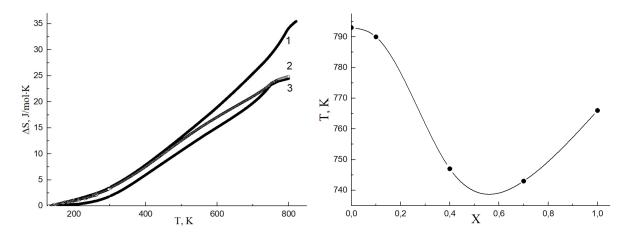


Рис.2. Температурная зависимость: а-аномальной энтропии. b-фазовая диаграмма «температуры T_c — концентрация x» композита xCoFe₂O₄- (1-x) PbTiO₃ для x = 0.0(1), 0.40 (2), 0.70 (30.

Тс от концентрации х композита СF-РТ. Как видно из рисунка с увеличением немагнитной составляющей композита для составов х=0.40 и 0.70 температура магнитного перехода становится меньше, чем температура сегнетоэлектрического перехода T_C \approx 763K для PT. Это указывает на то, что в области концентраций $0.40 \le x \le 0.70$ происходит увеличение вклада (концентрации) дополнительной фазы гексаферрита PbFe₁₂O₁₉ у которого $T_{N} = 710 K$ температура фазового перехода меньше, Tc чем сегнетоэлектрического перехода РьТіО3. Петли магнитного гистерезиса М(Н) при комнатной температуре, показанные на рис. 5а, указывают на наличие ферромагнитного порядка для всех составов, что вытекает из ферромагнитного характера шпинели CoFe2O4. Из-за «разбавления» материалом PbTiO3 петли M(H) и, соответственно, намагниченность насыщения М (рис.5а) и спонтанная намагниченность Мѕ (рис.5b) постепенно уменьшаются.

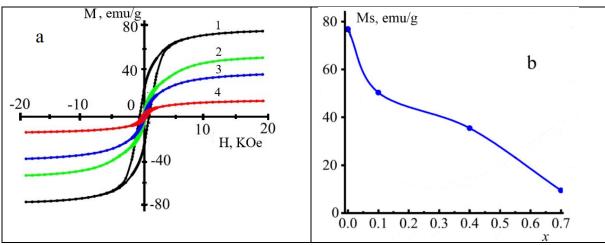


Рис.5. Петли магнитного гистерезиса для композита (1-х) $CoFe_2O_4$ - $xPbTiO_3$ (a) различного состава: x = 0.0(1), 0.10(2), 0.40 (3), 0.70 (4) и концентрационная зависимость спонтанной поляризации Ms (b).

Таким образом, на основании экспериментального исследования теплоемкости мультиферроидного композита (1-х) $CoFe_2O_4$ -х $PbTiO_3$ в интервале температур 250-820К установлено, что при добавлении титаната свинца к ферриту кобальта температура ФП понижается от 793 К до 744 К, а также к уменьшению теплоемкости в широкой области температур. Отмечается, что в формировании низкотемпературной фазы играют процессы типа порядок-беспорядок. Наличие упорядоченной магнитной структуры во всех композитах подтверждено наличием петель гистерезиса ферромагнитного M(H).

- [1] M.Fiebig, T.Lottermoser, D.Meier, M.Trassin, Nat. Rev. Mater. 1, 16046. (2016). https://doi.org/10.1038/natrevmats.2016.46
- [2] H.Palneedi, V.Annapureddy, S.Priya, J.Ryu, Actuators **5**, 31. (2016). https://doi.org/10.3390/act5010009
- [3] D.E.Zhang, X.J.Zhang, X.M.Ni, J.M.Song, H.G. Zheng, J. Magn. Magn. Mater. **305**, 70 (2006).
- [4] B.Abdulvakhidov, Zh.Li, K.Abdulvakhidov, A.Soldatov, A.Nazarenko, B.Kulbuzhev, I.Mardasova, N.Lyanguzov, E.Sitalo, S.Sadykov, M.Sirota, I.Dmitrenko, A.Manukyan, Appl. Phys. A. **128**, 293 (2022). https://doi.org/10.1007/s00339-022-05442-y

Теплоемкость механоактивированного ВіFeO₃

Митаров Р.Г. 2 , Каллаев С.Н. 1 , <u>Омаров З.М. 1 </u>, Абдулвахидов Б.К. 3 , Абдулвахидов К.Г. 4 , Бакмаев А.Г. 1

¹Институт физики им. Х.И.Амирханова ДФИЦ РАН, Махачкала, Россия ²Дагестанский государственный технический университет, Махачкала, Россия ³Дагестанский государственный университет, Махачкала, Россия ⁴Южный федеральный университет, Ростов-на-Дону, Россия E-mail:kallaev-s@rambler.ru

Феррит висмута BiFeO₃ (BFO) является одним из классических мультиферроиков, проявляющих сегнетоэлектрическое (температура Кюри TC = 1100 K) и антиферромагнитное упорядочение (температура Нееля TN ~ 640 К). Благодаря эффекту магнитоэлектрической (МЭ) связи при комнатной температуре BFO является потенциальным материалом для технологических применений, таких как устройства хранения данных и информации, преобразователи, спинтронные устройства, датчики резистивные коммутационные элементы. В области температур ниже точки Нееля феррит висмута обладает сложной пространственно-модулированной магнитной структурой циклоидного типа, которая не допускает наличия ферромагнитных свойств. Необходимым условием возникновения магнитоэлектрического эффекта является разрушение его пространственномодулированной спиновой структуры, которое может быть достигнуто различными методами, в частности, легированием ВГО редкоземельными элементами, созданием нано- и композитных материалов. Одним из технических методом воздействия на физические свойства BFO является механоактивация, которая приводит к диспергированию размеров частиц до наномасштаба, а также насыщению его структурными дефектами определенной концентрации и типа. Поскольку размер частиц BFO меньше (62 циклоидного периода \pm 2 нм), ОН должен перейти антиферромагнитного в ферромагнитное состояние [1].

В настоящей работе мы исследовали теплоемкость механоактивированного BFO в широком интервале температур 100-800 K, включая области фазовых переходов.

Феррит висмута был синтезирован методом твердофазной реакции. Для получения состава BFO были взяты оксиды Fe2O3 и Bi2O3 (Fe2O3 ≥ 99,0%, Bi2O3≥ 99,9%, Sigma-Aldrich), которые перемешивались в течение двух часов в агатовой ступке с добавлением этилового спирта. Шихту обжигали в платиновом тигле при температуре T = 1200C в течение 2 h. Механоактивация проводилась под давлением 800 и 1000 MPа между вертикально расположенными наковальнями Бриджмена, нижняя из которых вращалась с угловой скоростью 0.3 rad/min. Дифрактограммы исходных и механоактивированных образцов были обработаны методом полнопрофильного анализа по Ритвельду с использованием программного

пакета Powder Cell 2.3. Установлено, что исходные и механоактивированные порошки при комнатной температуре наилучшим образом соответствуют ромбоэдрической пространственной группе R3c. Однако в керамических образцах присутствует дополнительная вторичная фаза, соответствующая Bi25FeO39, но ее доля в исследуемых образцах незначительна.

Измерение теплоемкости проводилось на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix фирмы NETZSCH.

На рис.1 приведены SEM-изображения механоактивированных образцов феррита висмута, полученные на электронном микроскопе FE-SEM Zeiss SUPRA 25. Как видно из рисунка образцы характеризуется «рыхлой» структурой распределение размеров зерен в образце имеют мультимодальный характер в диапазоне от 40 нм до 700 нм.

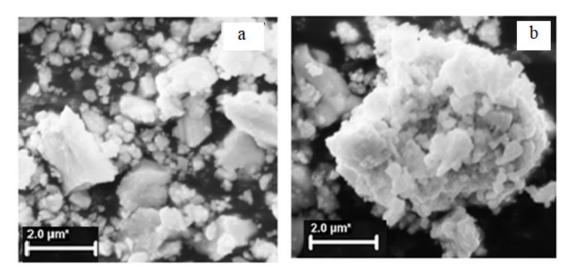


Рис.1 SEM-изображения механоактивированных при давлением 800 МПа (a)и 1000 Мпа (b) образцов феррита висмута.

На рис. 2a приведены экспериментальные данные теплоемкости BiFeO₃ до и после механоактивации в интервале температур 130-800 К. Как видно висмута после рис.2а, теплоемкость феррита механоактивации существенно увеличивается, свидетельствует что наличии дополнительных компонент теплоемкости, которые увеличиваются с механоактивации. При ростом давления ЭТОМ температура антиферромагнитного фазового перехода при механоактивации смещается, а теплота фазового перехода остается без изменения.

На рис.2b приведена температурная зависимость избыточной теплоемкости $\Delta C = C_p^{M} - C_p^{H}$, которая определялась как разность между экспериментальными зависимостями C_p^{M} (T) механоактивированных и C_p^{H} немеханоактивированного образцов феррита висмута.

Рассмотрим какие дополнительные компоненты теплоемкости могут появится при механоактивации мультиферроика $BiFeO_3$. Согласно [2] высокая концентрация дефектов приводит к увеличению теплоемкости наноструктурированного $BiFeO_3$ и размытию термодинамических свойств в области фазовых переходов. Механоактивация $BiFeO_3$ приводит к появлению точечных дефектов и дислокаций [3]. Если дефекты

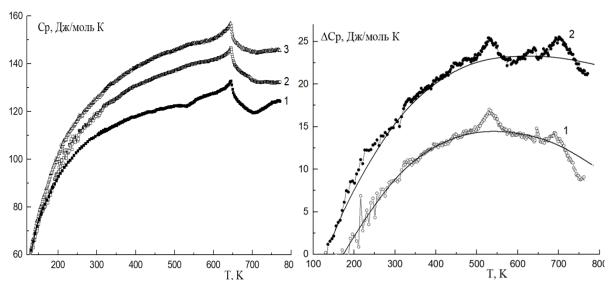


Рис.2. Температурные зависимости: а-теплоемкости C_p до (1) и после механоактивации мультиферроика $BiFeO_3$; b- аномальной составляющей теплоемкости $\Delta C = C^{\mathsf{M}}_p - C^{\mathsf{H}}_p$: 1-800 МПа и 3-1000 МПа, сплошная линия - результат аппроксимации выражением (1).

кристаллической решетки генерируются термическим путем, то энергия их образования также дает дополнительный вклад в теплоемкость кристаллической решетки керамики BiFeO₃. Поэтому можно предположить, что избыточная теплоемкость в феррите самария обусловлена термической генерацией точечных дефектов и дислокациями.

Наличие еще одной компоненты теплоемкости в феррите висмута может быть связано с ионами, которые могут занимать различные (несколько) структурно-эквивалентные позиции, разделенные энергетическими барьерами ΔE_1 , ΔE_2 . Появление таких состояний, разделенных энергетическими барьерами ΔE_1 и ΔE_2 от основного состояния авторы [4] связывают с изменением параметров кристаллической решетки вследствие полярных смещений ионов железа и висмута, а также с изменением угла между кислородными октаэдрами FeO6 с повышением температуры. Следует отметить, что увеличение теплоемкости механоактивированных образцах феррита висмута также может быть обусловлено размерным эффектом и увеличением поверхности при механоактивации [5].

Анализ температурной зависимости дополнительной теплоемкости ΔC (рис.3) позволяет интерпретировать ее как аномалию Шоттки для

трехуровневых состояний. Для трехуровневой системы теплоемкость Шоттки вычисляют по формуле [6]:

$$\begin{split} &C_{sch} = R \cdot [D_1 \cdot (\Delta E_1/kT)^2 \cdot exp(-\Delta E_1/kT) + D_2 \cdot (\Delta E_2/kT)^2 exp(\Delta E_2/kT)] / [1 \\ &+ D_1 \cdot exp(\Delta E_1/kT) + D_2 \cdot exp(-\Delta E_2/kT)]^2 \,, \end{split} \tag{1}$$

где D_1 и D_2 - отношение кратностей вырождения уровней.

Путем сравнения теплоемкости, рассчитанной по формуле (1) (сплошная линия на рис.3) и экспериментально выделенной избыточной теплоемкости ΔC , получены модельные параметры для механоактивированных BiFeO₃ под давлением 800МПа - D₁=4.012, D₂=0.740, $\Delta E_1 = 0.933 \text{eV}$ и $\Delta E_2 = 0.257 \text{eV}$ и 1000МПа - D₁=7.530, D₂=0.375, $\Delta E_1 = 0.401 \text{eV}$ и $\Delta E_2 = 0.632 \text{eV}$. Согласие экспериментально выделенной аномальной теплоемкости ΔC с вычисленной по формулу (1) C_{sch} достаточно хорошее (рис.3). Следует отметить, что наблюдаемые λ -аномалии области температур 670 и 558К, могут быть обусловлены структурными фазовыми переходами.

Таким образом показано, что избыточная теплоемкость механоактивированных образцов может быть обусловлена: 1) термическим генерированием точечных дефектов и дислокациями, возникающими при механоактивации; 2) переходами между энергетическими уровнями, связанные с полярными смещениями ионов железа и висмута, а также с изменением угла между кислородными октаэдрами FeO₆ с повышением температуры; 3) увеличением ангармонической компоненты теплоемкости; 4) увеличением поверхности и размерными эффектами.

- [1] I.Sosnowska, T.P.Neumaier, E.Steichele. J. Phys. C Solid State Phys. 15, 4835 (1982).
- [2] А.П.Леванюк, В.В.Осипов, А.С.Сигов, А.А.Собянин. ЖЭТФ **76**, 345 (1979).
- [3] С.Н.Каллаев, Н.М-Н. Алиханов, З.М.Омаров, С.А.Садыков, М.А.Сирота, К.Г.Абдулвахидов, А.В.Солдатов. ФТТ **61**, 1358 (2019).
- [4] D.C.Arnold, K.S.Knight, F.D.Morrison, Ph.Lightfoot. Phys. Rev. Lett. **102**, 027602. (2009).
- [5] А.И.Гусев. Наноматериалы, наноструктуры, нанотехнологии. Физматлит, М. (2009). 416 с.
- [6] Р.Г.Митаров, С.Н.Каллаев, З.М.Омаров, М-Ш.С.Хизриев, К.Г.Абдулвахидов. ФТТ **64**, *5*, 599 (2022).

Влияние нанопорошка оксидов металлов на изменение теплопроводности жидкого гидразингидрата

<u>Назруллозода А.С.</u>¹,Зарифзода М.А.²,Абдуллоев М.А.³, Сафаров М.М.², Тургунбоев М.Т.⁴

¹Таджикский государственный педагогический университет им. Садриддина Айни, Душанбе, Таджикистан e-mail: abdukodir-70@mail.ru

 2 Таджикский технический университет им. акад. М.С.Осими, Душанбе, Таджикистан e-mail: mohira-zaripovf(@list.ru)

³Горно металлургический институт, Худжанд, Таджикистан e-mail: abdulloev-muhamadjon@mail.ru

⁴Бохтарский государственный университета имени Носири Хусрава, Бохтар, Таджикистан e-mail: musojon@mail.ru

В статье приводятся результаты расчетно-экспериментального исследования теплопроводности жидкого ракетных топлив в зависимости от температуры (293-373)К и давления (0,101-16,24)МПа. Результаты исследования показали, что добавка наночастиц оксид металлов повыщает теплопроводность ракетных топлив. Для измерения теплопроводности коллоидных растворов на основе ракетных топлив (гидразингидрат) использована экспериментальная установка, работающая по методу нагретой нити (разработка профессор Сафарова М.М.). Общая относительная погрешность измерения теплопроводности составляет 2,5% при доверительной вероятности 0,95. На основе данных по теплопроводности исследуемых систем получены эмпирические уравнения.

Теплоперенос в наномасштабах может значительно отличаться от теплопереноса на макро и микрощтабах. Именно на наномасштабах характерные размеры устройств или пространственные масштабы их элементов сравниваются со средней длиной свободного пробега или длиной волны носителей энергии электронов, фотонов, фононов или молекул и атомов. В таких случаях классические законы теплопереноса нарушаются, а также необходимые новые подходы и модели для его описания. В частности, хорошо известны примеры нарушения классического закона теплопроводности Фурье для простых и композиционных наноструктур (нанопроволок или наномасштабных для лучшего понимания явление сверхрешеток и т.д.), а также закона Стефана-Больцмана для радиационного теплопереноса в нанозазорах. В последние годы достигнут значительный прогресс в понимании процессов переноса тепла, в настоящее время необходимы новые исследования для лучшего понимания явлений теплопереноса в наноструктурах. Кроме того, изучение процессов переноса энергии в наноструктурах может указать неожиданные пути для новых открытий и инновационных приложений. Разработка высокоэффективной новой техники, технологии и материалов с заранее заданными свойствами для различных отраслей народного хозяйства, как в целом, так и для ускорения научно-технического прогресса, невозможно без знания свойств веществ и материалов [1-3].

<u>Объект исследования</u>: Системы гидразингидрата + наноструктурных амфотерных оксидов металлов (Al_2O_3 , Fe_2O_3 , TiO_2 (с эффектами памяты форм) и др. Средний размер наночастиц d_{cp} =30,50,70,90 нм).

Разработка и создание экспериментальной установки для измерения коэффициента теплопроводности системы гидразингидрат + наноструктурных амфотерных оксиды металлов (Al₂O₃, Fe₂O₃, TiO₂, d_{cp}=30, 50, 70, 90 нм, 0,1; 0,15; 0,2; 0,25 и 0,3г.) под влиянием давления и метод нагретой нити, а также получение опытных значений теплопроводности в интервале температур (293–373) К, давления (0,101 – 16,24) МПа.

Достижение поставленной цели возможны решением следующих задач:

- выявлен механизм переноса тепла в системе гидразингидрат + наноструктурные амфотерные оксиды металлов (Al_2O_3 , Fe_2O_3 , TiO_2 , d_{cp} =30, 50, 70, 90 нм, 0,1; 0,15; 0,2; 0,25 и 0,3г.);
- модернизирована экспериментальная установка по измерению тепопроводности работающая методом нагретой нити при различных давлениях и температуры.
- получены экспериментальные данные теплопроводности исследуемых объектов в интервале температур (293-373) K, давления (0,101-16,24) МПа.
- установлена зависимость физико-химических и термодинамических свойств системы гидразингидрата + 0,1; 0,15; 0,2; 0,25 и 0,3 г.; (Al₂O₃, Fe₂O₃, TiO₂, d_{сp}=30,50,70,90нм) от температуры, давления и массы иссле-дуемых объектов;
- получены аппроксимационные зависимости, устанавливающие взаимосвязь между теплопроводностью и их плотностью, температурой, давлением, а также особенностями структуры исследуемых объектов;

Как показали результаты изучения работ других авторов, термодинамические и теплофизические свойства гидразина, диметилгидразина, фенилгидразина, этилгидразина, а также некоторых его водных растворов изучались профессором Сафаровым М.М. и его учениками. Однако теплофизические, термодиамические и электрофизические свойства гидразингидрата с добавкой ноноструктурных оксидов металлов при различных температурах и относительно небольших давлениях еще не были изучены. В связи с этим наш интерес и был направлен на проведение ряда экспериментов и изучение данных свойств гидразингидрата с различными концентрациями амфотерных оксидов металлов.

Значительный прогресс существует в области нанотехнологий, при этом способы получения наночастиц металлов весьма обширны. Метод консолидации инертного газа (IGC) является одним из самых эффективных методов. При этом способе металл испаряется в охлаждаемой камере,

который содержит инертный газ с низкой плотностью. От источника тепла к охладителю газа пар металла течет путем конвективной диффузии. Снижение температуры приводит к быстрому уменьшению равновесию давления пара и к достижению высоких степеней перенасыщения. Это способствует быстрому образованию критических зародышей и роста кластеров, которые затем достигают стенок камеры и вакансии на них. Мы исследуем "снизу-вверх" образование металлических нанокластеров с помощью многомасштабного метода компьютерного моделирования, которой включает квантовомеханический расчет сил между частицами, классической молекулярной динамики, атомной структуры и макроуровневое моделирование турбулентного перемешивания с образованием ядра кристалла, который быстро растёт за счет коалесценции и коагуляции. Многомасштабное моделирование предлагает не только моделирование в различных масштабах, но и возможность применения результатов моделирования, полученных на одном уровне в качестве входных данных для моделирования на следующем уровне масштабирования. Такое сочетание позволяет обнаружить ассоциацию между различными физическими свойствами и процессами формирования наночастиц. Чтобы исследовать требования нанопорошковых металлов, нужно потребовать размеры и их структуры. Мы использовали компьютерное моделирование, чтобы понять фундаментальные принципы, наноразмерных систем, таких как наночастицы металла, для чего нужно самостоятельно собрать, узнать и проконтролировать процесс сборки.

Наножидкости представляют собой суспензии твердых наночастиц с размерами, как правило, 1-100 нм в традиционной жидкости, такие как вода, гликоль и масло. Экспериментальная работа, до сих пор не была достаточно изучена: систематический сбор, звуковое количество когерент-ных, однозначных данных относительно методологии и результатов. Однако указывают на возможность успешного наножидкостей в качестве транспортной среды в нескольких системах и процессах. В исследований идет речь о измерении теплопроводности и динамической вязкости Al_2O_3 этиленгликоля со средним размером частиц 10 нм и объемом наночастиц во фракции в диапазоне от 1 до 3% в интервале температур от 0 до 50°C. Эти наночастицы проявляют большую тенденцию к агломерации в кластеры: средний размер кластера измеряется с помощью СДО аппарата Malvern ZetasizerNano ZS составляет около 105 нм, 10 раз заявленный средний размер диспергированных наночастиц. Переходной диск TPS 2500S инструментированный с 7577 зондом (2.001 мм в радиусе) максимальной неопределенности ($\kappa = 2$) в пределах \pm 5,0%. Измерение динамической вязкости и реологический анализ проводили с помощью вращающегося диска типа реометра Хааке Марс II инстру-ментированного с двойным конусом зонда (60 мм в диаметре), имеющего максимальную погрешность ($\kappa = 2$) в пределах $\pm 5.0\%$. Эксперимен-тальные результаты

были представлены в срок абсолютных значений и коэффициента расширения по отношению к основной текучей среды (воды) при той же температуре. Добавки в этиленгликоль нанодисперс-ного Al₂O₃ показывает тепловое соотношение, улучшающее проводимость от 9 до 29%, который наночастицу объемной доли и темпе-ратуры Al_2O_3 . увеличивает Этиленгликоль в нанодисперсии проявляет ньютоновское поведение во всех диапазонах температур и наночастиц объемной доли. Динамическая вязкость воды А12О3 нанодисперсия возрастает при увеличении объема фракции наночастицами. Экспериментальные изме-рения проводились также с имеющимися результатами измерений, проведенных различными исследователями и классическими вычисли-тельными моделями для определения теплофизических свойств суспензий, таких как корреляция Максвелла для теплопроводности и формула Эйнштейна для динамической вязкости. Все классические модели показывают слабую способность захватить экспериментальные данные и расхождением с увеличением измерения для увеличения объема фракции наночастиц. Отметим, различают два типа наночастиц.

Список литературы

- [1] А.С. Назруллоев, М.М.Сафаров, М.А. Зарипова, Х.А.Зоиров, Влияние наноразмерных амфотерных оксидов металлов на изменение тепло-, электро- и термодинамических свойств гидразингидрата./Душанбе, 2016, -235с. (Монография).
- [2] А.С.Назруллозода, М.М.,Сафаров, М.Т.Тургунбоев Влияние наноструктурных оксидов металлов на изменение теплофизических свойства гидразингидрата Душанбе, 2024,-162с. (Монография).
- [3] М.М. Сафаров, и др. Патент Республики Таджикистан № ТЈ 923, Душанбе, 2017.-5с (соавторы Зарипова М.А., Гуломов М.М., Собиров Дж. Ф.,Файзиев Б.Г.,Давлатов Р.Дж.,Хакимов Д.Ш.,Рафиев С.С.,Абдуллоев М.А., Раджабова Д.Ш., Раджабов А.Р.)

Heat capacity and Sadi Carno proses of nanofluids of the o-xylene and fullerene system at different composition parameters

Mansouri U.U.¹, Safarov M.M.², Nematov G.N.¹

¹Tajik State Pedagogical University named after S. Aini, Dushanbe, Tajikistan e-mail:Mansur_2210@mail.ru

² Tajik Technical University named after Academician M.S.Osimi, Dushanbe, Tajikistan e-mail:mahmad1@list.ru

The article presents the results of a computational and experimental study of the heat capacity of liquid o-xylene as a function of temperature (293-473)K pressure (0,101-49.01) MPa. The results of the study showed that additions of "fullerene-60" increase the heat capacity of liquid o-xylene. To measure the heat capacity of colloidal solutions of the system of liquid o-xylene and "fullerene-60", an experimental setup operating by the method of monotonic heating (developed by professors Madjidov Kh. and Safarov M.M.) was used. The total relative error in measuring the heat capacity is 3.2% with a confidence level of 0.95. Empirical equations were obtained on the basis of data on the heat capacity of the systems under study.

Despite certain successes in the development of the kinetic theory of the liquid state, including nanofixes, the problem associated with the specific features of thermal motion, the nature of heat transfer and momentum in a liquid remains unresolved. Mastering knowledge in the field of nanochemistry, fullerene chemistry, nanotubes, modern approaches to the synthesis of organic fullerene derivatives for the creation of nanomaterials and medical nanopreparations based on scientific and practical skills allows you to perform a purposeful task [1].

Fullerene—The sample size in this case is less than 1 mm, and it is usually used in graphene research. Fullerenes can also be used as additives to produce artificial highpressure diamonds. At the same time, the yield of diamonds inc-reases by $\approx 30\%$. In addition, fullerenes have found application as additives in intumescent (exploding) flame retardant paints.

The solubility of functional fullerene derivatives in water is determined by the presence in their molecules of a sufficient number of polar hydrophilic groups, which retain the hydrophobic residue of fullerene in solution. In addi-tion, the presence of ionic groups in substituents can hinder the association of molecules (although not always, as shown, for example.

[2]) Moreover, in some cases, the structure of the product strongly depends on changes in the reaction conditions, which at first glance are insignificant. He preparation of polyhydroxylated derivatives of fullerene C_{60} , called fullerenols and differing in the number of hydroxyl groups. In [3], the last four methods were compared and it was shown that all of them produce different products. Thus, fullerenol with the molecular formula C_{60} (OH) 26.5 was obtained, according to another method, 14-15 hydroxyl groups were included in the "fullerene C_{60} "

molecule, as a result of which C_{60} (OH)₁₈ + mm 1074 was obtained, also - C_{60} (OH)₁₂, mm 924, and - C_{60} (OH)₁₆, M.M. \approx 99[1].

O-xylene: Molecular weight 106.16 kg/kmol, T_{cip} =417.4K, T_{plav} =247.82K, T_{cr} = 632K, R_{cr} =3.69MPa, ρ_{cr} =280kg/m³ [5].

Experimental part.

To measure the heat capacity of the valves, an installation operating by the method of monotonous heating was used, which consists of a measuring cell, a cargo piston pressure gauge of the MP-600 and MP-2500 types, whose accuracy class is 0.001. The measurement is carried out as follows: The dependence of the temperature of an empty measuring cell on time is measured, then the measuring cell is filled the test substance and the experiment is performed similarly to the one given for an empty cell. A graph of temperature versus time for an empty and filled calorimeter is drawn using a computer on a flat coor-dinate.

Table 1.- Specific isobaric heat capacity (C_p, J/(kg*K)) chemically pure liquid o-xylene de-pending on temperature at atmospheric pressure (p=0.101 MPa) [5].

T,K	250	260	270	280	290	300
C _p ,	1700	1740	1770	1810	1850	1890

Table 2.-Specific isobaric heat capacity (Cp, J/(kg* K)) of o-xylene with the introduction of "fullerene-60" into it at various temperatures and pressures of 39,21MPa.

T,K	Objec	Objec	Objec	Objec	Objec
	. №1	№2	№3	№4	№5
293	1765	1794	1818	1852	1869
303	1800	1821	1844	1874	1890
313	1828	1850	1871	1891	1914
323	1879	1902	1923	1942	1979
333	1913	1936	1957	1976	1998
343	1951	1974	1995	2019	2039
353	1994	2016	2037	2057	2080
363	2037	2056	2077	2099	2122
373	2078	2096	2116	2138	2162
383	2115	2135	2157	2106	2198
393	2155	2176	2198	2219	2240
403	2191	2213	2234	2257	2278
413	2192	2257	2271	2290	2311
423	2268	2286	2308	2329	2350
433	2306	2325	2347	2370	2389
443	2350	2370	2393	2403	2420
453	2414	2424	2445	2469	2486
463	2449	2469	2490	2514	2533
473	2490	2503	2523	2548	2565

the Knowing masses solutions in the calorimeter, the heating time of an empty and filled calorimeter, we determine the specific isobaric heat capacity of solutions using calculated a formula for a given temperature and pressure range. Then, with the help of a piston pressure gauge, the pressure of the solution is changed, and the pressure of the experiment is recorded with a manometer. The experiments are carried repeatedly for this fixed pressure as at other pres-sures [3].

Results and discussion.

The specific isobaric heat capacity of o-xylol is given in the Handbook of the I.N. Ulyanov Chuvash State University, which was published in 2016 [4]. In particular, data on the heat capacity of pure o-xylene in the temperature range (293-473) are given K and pressure of 49.01MPa (Table 1-3).

As can be seen from Table 1-3., the specific isobaric heat capacity of chemically pure liquid o-xylene increases almost exponentially with increasing temperature. For example, when the temperature range changes from 293 to 473 K, the specific isobaric heat capacity increases by 42.94%.

Table 3.-Specific isobaric heat capacity (Cp, J/(kg*K)) of o-xylene with the introduction of "fullerene-60" into it at various temperatures and pressures of 49.01M Π a.

T,K	Obje	Objec	Objec	Objec	Objec
	№1	№ 2	№ 3	№ 4	№ 5
293	1776	1806	1830	1864	1881
303	1812	1833	1856	1886	1902
313	1840	1862	1883	1903	1926
323	1891	1914	1945	1954	1989
333	1925	1948	1969	1988	2012
343	1963	1986	2007	2031	2051
353	2006	2028	2049	2069	2092
363	2049	2068	2089	2111	2134
373	2090	2108	2128	2150	2171
383	2129	2147	2169	2188	2210
393	2167	2188	2210	2231	2252
403	2203	2225	2246	2269	2290
413	2209	2269	2283	2302	2323
423	2280	2298	2320	2341	2362
433	2318	2337	2359	2389	2401
443	2362	2381	2393	2422	2432
453	2426	2436	2457	2474	2498
463	2461	2481	2502	2526	2545
473	2502	2515	2535	2560	2577

To identify the contribution of fullerene-60 to the change in the heat capacity of colloidal solutions of the o-xylene and fullerene-60 system at different tem-peratures (293-473)K pressures (0.101-49.01)MPa conducted a compu-tational experimental study, the results of which are presented in the form of tables below (Tables 2 and 3). In the studied solutions, the concentration of "ful-lerene-60" varied from 0 to 2.5%. The range of concentration changes in the studied solutions was 0.5%.

Sample No.1 - chemically pure liquid o-xylene + 0.5% C₆₀; Sample No.2- chemically pure liquid o-xylene+1.0%C₆₀; Sample No. 3-

chemically pure liquid o-xylene+1.5%C₆₀; Sample No. 4- chemi-cally pure liquid o-xylene+2.0%C₆₀; Sample No. 5- chemically pure liquid o-xylene+2.5%C₆₀

Sample No.1 - chemically pure liquid o-xylene + 0.5% C_{60} ; Sample No.2-chemically pure liquid o-xylene+1.0% C_{60} ; Sample No. 3- chemically pure liquid o-xylene+2.0% C_{60} ; Sample No. 5- chemically pure liquid o-xylene+2.5% C_{60}

As can be seen from Tables 1-3, with an incre-ase in temperature and pressure, the specific isobaric heat capacity of colloidal solvents of the o-xylene system with the introduction of fullerene-60 into it increases linearly, i.e. the addition of "fullerene-60" also leads to an increase in the heat capacity of solutions over the entire temperature range. For example, at a temperature of 293 K, the heat capacity of the nanofluid of the o-xylene and fullerene-60 system increases by 5.4%, at a temperature of 393 K, the heat capacity increases by 3.79%, and at a temperature of 473 K, this change reaches 5.03%.

Generalization of experimental data

To process and generalize data on the specific isobaric heat capacity of the studied solutions, we used the law of thermodynamic similarity and based on it, approximation equations were obtain-ned. To perform this task, we used the following functional dependence [3,6]:

$$\frac{c_p}{c_p^*} = f\left(\frac{T}{T_1}, \frac{P}{P_1}, \frac{n}{n_1}\right),\tag{1}$$

Comparing the results of an experimental study of the specific isobaric heat capacity of solutions based on o-xylene with embedded fullerene-60, it turned out that they are functions of pressure and concentration of fullerene-60 [3].

$$C_p^* = f(P, n) \tag{2}$$

Using experimental data on the specific isobaric heat capacity of o-xylene with the introduction of "fullerene-60" and the first part of the functional dependence (1), we obtain [3,6]:

$$\frac{c_p}{c_p^*} = f\left(\frac{T}{T_1}\right) \tag{3}$$

In equation (3) Cp* are the values of the specific isobaric heat capacity of the studied solutions, which were obtained experimentally. The value Cp* is selected when the temperature is constant T1 = 373K. It should be noted that the number of Cp* for each sample has one value. If the sample is in a liquid state and the specific isobaric heat capacity is studied at different temperatures and pressures, for example, the measurement was carried out at six pressure values, then the number of Cp* values will be equal to six values at each pressure, respectively. In our case, we have 5 samples based on o-xylene with the introduction of "fullerene-60". The measurement was carried out at six different pressures, including atmo-spheric pressure. Thus, at the specified average temperature of the experiments, the amount of Cp* will correspond to 30 values. In this regard, to generalize the experimental data, in particular for Cp*, we use the following expression [3,6]:

$$\frac{C_p}{C_p^*} = f\left(\frac{P}{P_1}\right) \tag{4}$$

In expression (4), C_P^{**} is selected at a pressure of p=29.42MPa. Next, to generalize the value of C_P^{**} , we use the following expression [3,6]: $C_P/(C_P^*)=f(n/n1)$ (5) From expressions (4), (5), taking into account expression (2), we obtain a generalized formula with which we can calculate the specific isobaric heat capacity of the systemthemes of o-xylene at various temperatures, pressures and concentrations of "fullerene-60" with an average error of up to 3.5%.

- [1] Sharipova, D.A. Synthesis and research of amino acid derivatives of fullerene-C₆₀ with anti-viral properties against avian influenza virus A/H5N1- Specialty 02.00.03.- Organizational che-mistry/ Dilrabo Azizbekovna Sharipova // Dissertation for the degree of Candidate of Chemical Sciences, Dushanbe-2020,-131c.
- [2] Guldi, D. Prato M. Excitedstate properties of C₆₀ fullerene derivatives/ D.Guldi// Acc. Chem. Rec. 2000. Vol.33. P.695–703.
- [3] Safarov, M.M. Thermophysical properties of es-ters and aqueous solutions of hydrazine depending on temperature and pressure./ Mahmadali Mahmadievich Safarov // Diss.Dr. T. N. Dushan-be, 1993, -950 p. (in two volu mes)
- [4] Reference manual for course work on processes and devices of chemical technology "I.N. Ulyanov Chuvash State University" Chemical and Pharmaceutical Faculty, "Thermophysical proper-ties of liquid substances and solutions" 2116
- [5] Physico-chemical properties of individual hydrocarbons. The Handbook is edited. Tatevskii V. M., M., 1980.-342s.
- [6] Zaripova, M.A. Thermophysical and thermody-namic properties of aqueous solutions of hydrazine and phenylhydrazine./M.A. Zaripova, A.B.Badalov, M.M. Safarov // Monograph. Dushanbe, 2007.- 129 p.

The influence of temperature, pressure and dimethyl ketone nanopowder on the change in thermal conductivity of water and mathematical modeling

Safarov P.M.¹, Zoirov H.A.², Mirzoev I.N.³, Safarov M.M.¹

¹ Tajik technical university by named akad. M.S. Osimi, Dushanbe, Tajikistan e-mail; sparviz@mail.ru

²DTS-2, Dushanbe, Tajikistan e-mail; zoirov@mail,ru

³Technical college TTU by named akad. M.S. Osimi, Dushanbe, Tajikistan e-mail; mirzoev@mail.ru

The article presents the results of an experimental study of thermal conductivity at various temperatures (293-473)K, pressures (0,101-49,01)MΠa and concentrations nanopow-der (0-0,5)%.of dimethyl ketone. The total relative error in measuring thermal conductivity at a confidence level of 0.95 is 4.2%. Based on the data on the thermal conductivity of the stu-died nanofluids of the electrolyte system, approximation dependences were obtained.

Introduction

To process a large volume of water, as well as systems with a small condensate return, deaeration plants are used. Ensuring reliable and economical operation of steam boilers is possible in the absence of internal deposits on the heating surfaces and minimizing the level of corrosion of structural materials. Such tasks can be solved by organizing a rational water regime, which includes the necessary water treatment of drinking water and some specific constructive measures to purify feed water from gaseous and solid impurities. The reduction of operating costs and the protection of expensive equipment are ensured by the introduction of an automated complex, the implementation of water quality analysis, the management of dosing devices, and informing maintenance personnel about problems [1].

If necessary, a significant amount of water is passed through a reverse osmotic installation and a reagent is injected, which prevents the membranes from overgrowing with hard salts. After softening or desalination, feed water for steam boilers is subject to thermal degassing, which reduces the oxygen and carbon dioxide content. They operate in a fairly narrow temperature range. When heated, dissolved gases leave the system in the form of steam. For the largest installations and systems with a small condensate return, vacuum or atmospheric deaeration plants are used [1].

For numerical calculations and the compilation of a physical model of a deaeration plant, it is necessary to know the thermal conductivity of feed water at various temperatures and pressures [2]. The thermal conductivity of ordinary water at various state parameters, at the saturation line, and in the critical region has been studied by many authors both abroad and the teachings of the former Soviet Union [3-6]. In the Handbook edited by Professor N.B. Vargaftik, the

following are given regarding the study of the thermal conductivity of water. The International Association for the Properties of Water Vapor (IAPW) adopted in 1977. a new standard for the thermal conductivity of water and steam. It contains refined data, especially in the field of high pressures and in the critical region, and covers a much larger range of parameters compared to the existing international skeletal tables MST-64.

If MST-64 included the range of pressures from 0 to 50 MPa and temperatures from 0 to 700 °C, then in the new standard these limits are extended to 100 MPa and up to 800 °C. In all this area, analytical expressions of varying complexity and accuracy are provided for thermal conduction, which allows their use in calculations for various purposes. The list of works, the data of which were included in the international array of initial data for thermal conductivity, is given in the article [3]. The standard material for thermal conductivity contains tables.

The normative material for thermal conductivity contains tables of estimated experimental values and two interpolation equations. In the tables that are compiled for critically estimated values, both the values of λ and the values of the absolute error of these values $\Delta\lambda$ are given. The tables for the value of thermal conductivity are compiled for each of the two equations: one for industrial purposes and the other, more complex, taking into account the exact area at high and especially the nearroof region [4].

The experimental part.

To study the thermal conductivity of the feed water of the system (dimethyl ketone nanopowder from 0-0.5% + distilled water) depending on tem-perature (293-473)K and pressure (0.101-49.01) MPa. An experimental setup based on the heated filament method was used [2]. With this installation, the thermal conductivity of liquids and solutions can be measured with an error of 4.2%.

An experimental installation (L.P. Fillipov device), which students of the Lomonosov Moscow State University branch in Dushanbe performed laboratory work. This device was created and patented by us with a Small patent of the Republic of Tajikistan (No. TJ 923,1917g.7s) [7]. The device of Fillipov L.P., which existed in the branch of Lomonosov Moscow State University, made it possible to measure the coefficient of effective thermal conductivity of gases and liquids at the saturation line. And our patented installation makes it possible to measure the thermal conductivity of liquids at various temperatures and pressures. To perform this task, a pressure vessel and a piston pressure gauge of the MP-600 type are adapted to the Phillipova L.P. device, i.e. a pressure vessel and a piston pressure gauge of the MP-600 type are connected, the accuracy class is 0.001. The total relative error of measuring thermal conductivity with a confidence probability of 0.95 is 4.2%. To clarify the reliability of the experimental installation, control measurements were carried out. Water, benzene and air were used as control measurements.

The results of the study

The results of the study of the thermal conductivity of water at various temperatures and the concentration of dimethyl ketone nanopowder (a substitute for hydrazine) showed that an increase in temperature, mass concentration of dimethyl ketone leads to an increase in the thermal conductivity of water. Based on the law of thermodynamic similarity and experimental data on the thermal conductivity of electrolytes (distilled water+ dimethyl ketone nanopowder), a number of approximation dependencies were obtained [2]. Experiments have shown that the thermal conductivity of ordinary water and the added mass concentration of dimethyl ketone nanopowder varies according to various patterns.

Processing of experimental data

Processing of experimental data in order to obtain a calculation equation for thermal conductivity, aqueous solutions depending on temperature and pressure, we processed experimental data in the form of the following functional dependencies [2]:

$$\frac{\lambda}{\lambda_1} = f\left(\frac{T}{T_1}\right), \qquad \frac{\lambda_p}{\lambda_{p_1}} = f\left(\frac{P}{P_1}\right). \tag{1}$$

were, λ , λ_p - thermal conductivity of the test sample depending on tempera-ture, pressure; λ_1 , λ_{p1} - thermal conductivity of the test sample depending on temperature, pressure; T_1 , P_1 Π T, P - temperature, pressure at which the test is carried out; T_1 = 323 K; P_1 =19,24MPa.

Conclusion

It was found that with increasing temperature, concentration of dimethyl ketone nanopowder (a substitute for hydrazine) and pressure, the thermal conductivity of water increases in various patterns. The thermal conductivity of pure water, including dissociated water, increases to the boiling point, and then decreases exponentially. Based on experimental data and the law of thermodynamic similarity, we have obtained a number of approximative expressions, with which we can numerically determine the coefficient of effective thermal conductivity of water-based solutions with embedded dimethyl ketone powder (a substitute for hydrazine).

References

- [1] Mankina, N.N. Physico-chemical processes in the steam-water cycle of power plants. M., "Energia",1977.- 256c.
- [2] Gulomov, M.M. The influence of carbon nanotubes and silicic acid nanopowders on changes in the thermophysical, thermodynamic and sedimentation properties of some liquid hydrocarbons and their mixtures/ Masrur

- Mirzokhonovich Gulomov// Dis.....Doctor of Technical Sciences, Dushanbe, 2021 in two volumes (volume 1-273 pages and volume 2-163 pages).
- [3] Alexandrov, A.A. International tables and equations for thermal conductivity of water and water vapor//Thermal power engineering, 1980, №4,-C.20-25
- [4] Tarzimanov,A.A.,Lozovoi Y.S. of water at high pressures// Reports C-8 of the 7^{-th} ICPS,Tokyo,1968.-P.1-11
- [5] Castelli, V.J., Stanley E.M.// J.Chem A.Eng. data,1974. Vol.19,№1.-P.8-11.
- [6] Vargaftik, N.B. et al. Handbook of thermal conductivity of liquids and gases, Energy atomizdat, 1990.-351c.
- [7] Safarov, M.M.y.e.. PT, №TJ 923,1917г.-7c

Specific heat capacity of some electrolytes depending on the concentration of silicon fullerenes

Radjabova S.S.¹, Safarov M.M.²

¹Tajik State Pedagogical University named after S. Aini, 121 Rudaki Ave., Dushanbe, 734003, Tajikistan

E-mail:sayehate@mail.ru

²Tajik Technical University named after akad.M.S. Osimi, 10a Rajabov Ave. Dushanbe, 734025, Tajikistan

E-mail:mahmad1@list.ru

The article presents the results of an experimental study of the heat capacity, of NaCl electrolytes depending on temperature at pressure. The rese-arch results showed that silicon nanotube additives increase the heat capacity of NaCl electrolytes. To measure the specific isobaric heat capacity of electrolyte solutions, an experimental setup, a calorimeter, operating according to the method of monotonic heating was used. The overall relative error in measuring the heat capacity is 3.2% with a confidence level of 0,95.

INTRODUCTION

When developing new materials with specified properties and their use for hightech industries, it is extremely important to predict the thermophysical properties and, based on it, obtain the characteristics and approximation dependences of nanofluids at various temperatures and pressures. At the same time, despite the extensive accumulated experience in designing and operating nanoparticles with memory effects (micro-, nanodimensional) fractions and their use for the preparation of nanofluids, at the moment there is no unified theory and model explaining and predicting all the effects that can be observed in the experiment. Mathematical modeling using common software packages is widely used when working with conventional liquids, but in the case of composites does not provide reliable enough results to apply them in practice. The process under study was described by nonstationary differential equations. This technique allows you to exclude the pressure field As a result of numerical modeling of the flow process in a closed cylindrical cavity with energy sources, the influence of the characterizing parameters was analyzed: Archimedes num-ber, Bio number, Grasshoff and Prandtl numbers, Rayleigh numbers, Nusselt numbers, Peckley number, etc.. In the case of dynamic loading modeling, as a rule, the same failure criteria are applied as for static. Another problem that ari-ses when modeling the destruction of composite materials is that most of the destruction criteria are formulated for the two dimensional case. In the three-dimensional case, many criteria often not only have a complex formulation, but also require constants, which are extremely difficult to obtain during experi-ments. The development of destruction criteria is presented in [1].

This paper describes the flow criteria of nanofluids, which use a specific set of material parameters available for direct measurement. These criteria are used in many commercial settlement packages. It also provides a calculation of model tasks, a comparison of criteria with each other and an analysis of the physical mechanisms on which these criteria are based. In addition, when composing a mathematical model, the interaction energies between particles and molecules of nanofluids, which are included in the differential equation, are numerically determined. The thermophysical characterristics of nanoliquids, which are used in the preparation of computer modeling, i.e., in the above calculations, they are used from Reference Books or obtained by experimental research. For our case, for nanofibre (electrolytes) with the addition of nanoparticles from silicon fulerene for some thermophysical characteristics, including the specific isobaric heat capacity.

OBJECTS OF RESEARCH

Silicon fullerenes. Silicon is quite often used in industry and technology. Silicon and its derivatives are important materials for industry, for example, in semiconductors, optoelectronics and telecommunications. The linear sizes of nanodiamonds range from 10nm to 50nm. The diameter of carbon nanotubes ranges from 4 nm to 20 nm, and their length from 100 nm to 2 microns [1-4]. The discovery of carbon fullerenes led to an intensive search and study of fullerene-like nanoparticles of nanoparticles of other elements and inorganic compounds. The first contender in this race was silicon, the element closest in properties to carbon. However, it has been found that silicon fullerenes cannot maintain an ideal skeleton structure like carbon fullerenes. Calculations of the density functional theory have shown that even with encapsulated particles, almost all endohedral.

However, it has been found that silicon fullerenes cannot maintain an ideal ske-leton structure like carbon fullerenes. Calculations of the density functional theory have shown that even with encapsulated particles, almost all endohedral silicon fullerenes exhibit strongly wrinkled skeleton structures compared to their carbon counterparts [3]. In particular, the structures of fullerene and silicon nanotubes can be stabilized by metal encapsulation or hydrogen capture [4]. Within the framework of the MINDO/3 approximation, taking into account intervolume interactions, the structures of Sin and SinHn fullerenes with sizes 20 < n < 60 and the stability of hollow silicon clusters consisting of more than 36 atoms were optimized by the Monte Carlo method [2-4]. NaCl electrolyte: No.1- $(H_2O+5\% NaCl);No.2-(H_2O+10\% NaCl));No.3-(H_2O+12.5\%NaCl);No.4-(H_2O+15\% NaCl);No.5-(H_2O+24.26\% NaCl).$

A review of the literature data on the heat capacity of heat carriers and the results of the study Literature data on the heat capacity of aqueous NaCl solutions at various temperatures (288-323) K are given in [5-6] and with the addition of fullerene in Table 1,2.

Table 1.- Specific isobaric heat (Cp, J/(kg*K)) aqueous solutions of NaCl (H₂O +5%NaCl) depending on temperature, fullerene (Si) concentration and atmos-pheric pressure (0.101 MPa).

Objects T,K	№ 1[3]	№2	№ 3	№4	№5	№6
288,2	3987	4032	4077	4122	4167	4210
293,6	3975	4020	4064	4110	4155	4201
313,2	3925	3969	4014	4055	4104	4149
333,6	3883	3928	3973	4018	4063	4108
353,4	3837	3882	3927	3972	4017	4062
373.4	3791	3836	3881	3926	3971	4016
393,0	-	3790	3835	3880	3925	3969
413,5	-	3744	3789	3834	3879	3923
423.4	-	3698	3743	3788	3833	3878
433,2	-	3652,4	3697,6	3742,6	3787,0	3831,4

No.1(H₂O+5%NaCl+0.5%Si(fullerene));No.2-(H₂O+5%NaCl+1.0%Si(fullerene));No.3-((H₂O+5% NaCl+ 1.5%Si(fullerene);No.4-(H₂O+5%NaCl+2.0%Si(fullerene);No.5-(H₂O+5%NaCl+2.5%Si(fullerene));No.6-(H₂O+5% NaCl+3.0%Si (fullerene)).

The results of the study of the heat capacity of aqueous NaCl solutions as a function of temperature at atmospheric pressure by the authors [5-6] and our measurements of the heat capacity of the studied solutions with the intro-ducetion of nanosized silicon fullerenes at various pressures are shown in Tables 1-2.

Table 2.-Specific isobaric heat capacity (C_p, J/(kg*K)) aqueous solutions of NaCl (H₂O+ 12.5% NaCl), depending on temperature, fullerene (Si) concentration at a pressure of 4.98 MPa.

Object							
T,K	№ 1[3]	№ 2	№3	№4	№5	№6	
288,2	3977	4022	4067	4112	4157	4200	
293,6	3965	4010	4054	4100	4145	4190	
313,2	3915	3958	4004	4045	4093	4137	
333,6	3873	3918	3963	4008	4053	4100	
353,4	3827	3872	3917	3962	4007	4052	
373.4	3780	3824	3871	3916	3961	4006	
393,0	-	3780	3825	3870	3913	3954	
413,5	-	3734	3777	3824	3867	3913	
423.4	-	3686	3733	3778	3823	3868	
433,2	-	3642,4	3686,6	3732,6	3777,0	3821,4	
	344 (YY 0 + 40 F0 (3Y 04 + 0 F0 (01 (1						

№1(H₂O+12,5%NaCl+0,5%Si(фуллерен));№2(H₂O+12,5%NaCl+1,0%Si(фуллерен));№3((H₂O+12,5%NaCl+1,5%Si(фуллерен);№4(H₂O+12,5%NaCl+2.0%Si(fullerene);No.5(H₂O+12.5%NaCl+2.5%Si (fullerene); No.6-(H₂O+12.5% NaCl+3.0%Si(fullerene).

Processing and generalization of experimental data on the heat capacity of the studied solutions. The analysis of the value (C**) showed that it is a function of the concentration of NaCl and silicon fullerenes, which are des-crybed by the expressions:

$$C_{P}=[(0.548(n_{NaCl})^{2}-50.762(n_{NaCl})+4107)]C^{*}, J/(\kappa r.K)$$
(1)

$$C^{**}=F(n_{si})+D,J/(\kappa\Gamma.K)$$
 (2)

From equations (1) and (2) we obtain: $C_P=[(0.548(n_{NaCl})^2 -50.762(n_{NaCl}) +4107)] [F(n_{s_i})+D], J/(K\Gamma.K)$

(3)

The coefficients of equation (3), F and D are shown in Table 3.

Table 3.- Coefficients F and D of equation (3) for the studied electrolytes at temperature T1=353K and atmo-spheric pressure.

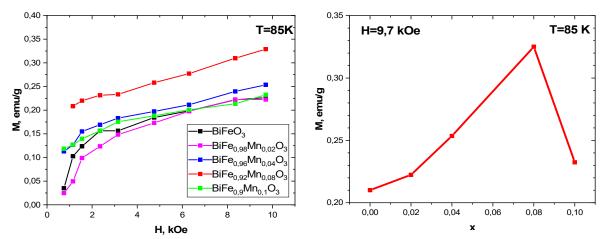
N_0N_0	Objects	F, J/ (κε Κ·%)	D, J/ (κεK)
1	$(H_2O+5\%NaCl)+(0-2,5\%Si)$	90,063	3837,3
2	$(H_2O + 10\%NaCl) + (0 - 2,5\%Si)$	99,166	3699,8
3	$(H_2O + 12.5\%NaCl) + (0-2.5\%Si)$	110,11	3578,3
4	$(H_2O + 15\%NaCl)$ +(от 0 до 2,5% Si)	100.14	3415,2
5	(<i>H</i> ₂ <i>O</i> +24,26% <i>NaCl</i>)+(0 - 2,5%Si)	130.62	3206.2

Using equation (3), taking into account the values of Table 1 and the expressions, it is possible to numerically calculate the specific isobaric heat capacity of colloidal electrolytes of the system (NaCl+H₂O) at various concentrations of NaCl and silicon fullerenes at atmospheric pressure and room temperature.

Literature

- [1] Kaleeva, A.A., Timerkaev B.A., Shamsutdinov R.S., Saifutdinov A.I., Shakirov B.R. Microarc method of synthesis of silicon nanostructures./ 1st All-Russian Conference with international participation. "Gas-discharge plasma and synthesis of nanostructures", KNITU-KAI, Kazan, 2020.-pp.120-122.
- [2] Kumar, V. Nanosilicon. Elsevier, Oxford, 2007, p.368.
- [3] Gao, Yi, Zeng X.C. M4@Si28M= Al, Ga...: Metalencapsulated tetrahedral silicon fullerene //The journal of Chemical Physics- 2005-N.123-p.204325-4.
 [4] Galashev, A.Y. Thermal sta-bility of silicon fullerenes stabilized by hydrogen. Computer experiment //FTP 2008 Vol.42, N.5 p.611-617.
- [5] Kovalevskaya, N.S. Heat capacity of aqueous solutions of NaCl./N.S. Kovalev-skaya// Dis.... Candidate of Technical Sciences, M.: MEI.-1954.-198p.
- [6] Handbook of thermophysical properties of gases and liquids /N.B. Vargaftik, L.P. Filip-pov et al.// Publishing House of Standards, M., 1963.-708p

Магнитные свойства слаболегированных мультиферроиков BiFe_{1-x}Mn_xO₃ ($0.0 \le x \le 0.1$), синтезированных золь-гель методом


Сафонов Р.А.^{1,2}, Тарасенко Т.Н.¹, Наймушина Д.Е.^{1,2}, Шевелева А.В.^{1,2}, Потапская О.Н.1

 1 Донецкий физико-технический институт им. А.А. Галкина, Донецк, ДНР, Россия e-mail: t.n.tarasenko@mail.ru

> ²Донецкий государственный университет, Донецк, ДНР, Россия e-mail: romansafonov05@mail.ru

Изучены структурные и магнитные характеристики серии образцов на основе мультиферроика BiFeO₃, слаболегированного ионами марганца Mn³⁺. Данные исследования являются продолжением работы [1]. Синтез твердых растворов $BiFe_{1-x}Mn_xO_3$ (0.0 \le x \le 0.1) проведен золь-гель методом. Для всех составов кристаллическая структура определена как ромбоэдрически искаженная структура перовскита (пр. гр. R3c). Данные исследования являются продолжением работы [1].

Кривые намагничивания образцов BiFe_{1-х}Mn_xO₃ при T=85 показаны на Рис. Состав $BiFe_{0.92}Mn_{0.08}O_3$ имеет наибольшее намагниченности. На Рис. 2 представлена концентрационная зависимость уд. намагниченности M(x) для системы $BiFe_{1-x}Mn_xO_3$ (0.0 $\leq x\leq 0.1$) при T=85К. С увеличением концентрации марганца зависимость M(x) монотонно возрастает и достигает максимума при критическом значении $x_{\kappa p} = 0.08$, затем резко уменьшается при x=0.1 практически до уровня «чистого» BFO. В работе [2] при изучении серии составов ВіFе_{1-х}Мп_хО₃ максимальное значение намагниченности насыщения M(x) соответствует концентрации x_{KD} =0.075, что практически подтверждает наши результаты.

 $_xMn_xO_3$ (0.0 $\leq x\leq 0.1$).

Puc.1 Кривые намагничивания M(x) $BiFe_{1}$ - Puc.2 Концентрационная зависимость $M(x) BiFe_{1-x}Mn_xO_3 (0.0 \le x \le 0.1).$

В [3] показано, что методом рентгеновской дифракции, можно получить лишь картину усредненной структуры в отличие от метода спектроскопии комбинационного рассеяния света, который дает информацию о локальной структуре многих замещенных манганитов, содержащих различные микро- и макрофазы. Однако для $x > x_{\kappa p}$ намагниченность уже представляет собой наложение двух фаз, при этом объем фазы R3c с высокой удельной намагниченностью уменьшается, в то время как объем фазы Pbnm с низкой удельной намагниченностью увеличивается, а значит, суммарное значение M(x) уменьшается. Подобное поведение M(x) наблюдалось нами в системе $BiFe_{1-x}Mn_xO_3$ для x=0.05 и 0.15 [1], где значение уд. намагниченности для x=0.05 было значительно больше, чем для x=0.15.

Происхождение второй перовскитной фазы в BiFe_{1-х}Mn_xO₃ объясняется возникновением двух типов искажений октаэдров (Fe/Mn)О₆ [3] при замещении ионов железа ионами марганца, поскольку Mn³⁺ - янтеллеровский ион. А в структуре ВіМпО3 с моноклинно искаженной структурой перовскита (пр. гр. С2) ион марганца может иметь три неэквивалентных позиции. Замещение Fe³⁺ на Mn³⁺ сопровождается симметрии BFMO, второй понижением В возникновением кристаллографической Pbnm фазы сосуществованием И двух кристаллографических фаз R3c и Pbnm - в диапазоне замещений 0.03 < x < 0.2[4]. При этом они отличаются величиной намагниченности насыщения М_г: $M_r(R3c)>M_r(Pbnm)$ [4]. Следовательно, при достижении критической концентрации марганца объем R3c-фазы начинает уменьшаться, а Pbnmфазы – увеличиваться. А значит, неизбежно должна уменьшаться величина суммарной намагниченности фаз R3c и Pbnm, что и наблюдается на эксперименте.

Проведенные исследования свойств структуры И магнитных слаболегированных ионами марганца образцов феррита висмута выявили наличие максимума на концентрационной зависимости удельной намагниченности M(x) при некотором критическом содержании Mn³⁺ $x_{\text{кр.}}=0.08$. При $x>x_{\text{кр.}}$ в структуре $\text{Bi}(\text{Fe},\text{Mn})\text{O}_3$ возникает, помимо ромбоэдрической *R3c* фазы, вторая кристаллографическая фаза орторомбической пр. гр. *Рbnm* с меньшей удельной намагниченностью. Дальнейших рост x приводит к уменьшению суммарного значения M(x)вследствие перераспределения объемов сосуществующих фаз.

- [1] Т.Н. Тарасенко и др., Изв. РАН. Сер. физ. 87, 412 (2023).
- [2] S. Chandel, P. Thakur, M. Tomar, et al. Ceram. Int. 43, 13750 (2017).
- [3] L. Martín-Carrón, A. de Andrés, et al. Phys. Rev., **B 66**, 174303 (2002).
- [4] L. Chen, L. Zheng, Y. He, et al., J. All.Comp., 633, 216 (2015)

Применение искусственного интеллекта для поиска и разработки новых термоэлектрических и калорических материалов в системе сплавов Гейслера

Оршулевич М.А., Утарбекова М.В., Таскаев С.В. Челябинский государственный университет, Челябинск, Россия e-mail: shchichko.marina.csu@gmail.com

В последние годы методы искусственного интеллекта (ИИ) стали мощным инструментом в материаловедении, позволяя ускорить открытие и функциональных материалов [1].Особый оптимизацию Гейслера, демонстрирующие представляют сплавы перспективные свойства, калорические И термоэлектрические что делает привлекательными для энергетических и охлаждающих технологий [2,3]. Традиционные методы поиска таких материалов требуют значительных временных и ресурсных затрат, в то время как машинное обучение и методы предсказательного моделирования предлагают эффективные альтернативы. позволяют частности, алгоритмы ИИ анализировать функциональными между составом, структурой И зависимости характеристиками сплавов, что способствует целенаправленному дизайну новых соединений с улучшенными свойствами. В данной работе рассматриваются современные подходы к применению ИИ для поиска и синтеза новых термоэлектрических и калорических материалов на основе сплавов Гейслера, а также их потенциальные приложения.

Ni-Co-Mn-Ti Поликристаллические сплавы варьируемым содержанием Ni₃₄Co₁₆Mn₃₅Ti₁₅, Ni₃₄Co₁₆Mn_{37,5}Ti_{12,5}, элементов $Ni_{34}Co_{16}Mn_{40}Ti_{10}$, Ni_{33,8}Co_{14,8}Mn_{36,4}Ti₁₅, $Ni_{31,6}Co_{16,6}Mn_{39,7}Ti_{12,1}$ Ni₃₇Co₁₃Mn_{34,5}Ti_{15,5}, Ni₃₅Co₁₅Mn₃₇Ti₁₃) были получены методом дуговой плавки в атмосфере аргона. Исходные металлы Ni, Co и Ti имели чистоту свыше 99,98 мас.%, а Мп – не менее 99,5 мас.%. Для компенсации потерь марганца во время плавки дополнительно вводили 1,5 мас. % Мп. Слитки переплавляли и трижды переворачивали для улучшения однородности. После этого образцы сплавов термообрабатывались в вакуумированных кварцевых ампулах и отожгались при 1173 К в течение 96 часов с последующей закалкой в воде.

Исследование синтезированных образцов методом сканирующей электронной микроскопии с энергодисперсионным микроанализом (СЭМ-ЭДС) подтвердило их структурную однородность. Элементный анализ показал хорошее соответствие между экспериментально определенным составом и заданными стехиометрическими соотношениями. Рентгеноструктурный анализ был выполнен на дифрактометре BRUKER D8 ADVANCE с использованием Си Кα-излучения. Магнитные свойства

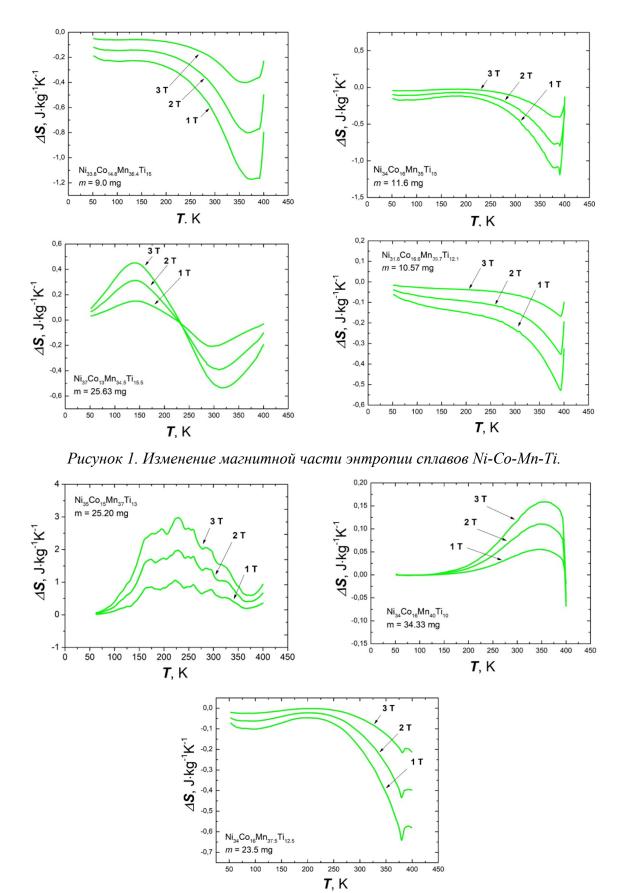


Рисунок 2. Изменение магнитной части энтропии сплавов Ni-Co-Mn-Ti.

изучены на вибрационном магнетометре Versa Lab Quantum Design в диапазоне температур 50-400 К при полях до 3 Тл.

В синтезированных нами сплавах был изучен магнитокалорический эффект (МКЭ), который представляет собой явление, проявляющееся в изменении температуры магнитных материалов под воздействием внешнего магнитного поля.

Изотермическое изменение магнитной энтропии (ΔS_m) рассчитано по данным намагниченности с использованием соотношения Максвелла:

$$\Delta S_m(T, H) = \int_{H_i}^{H_f} \left(\frac{\partial M_{(T, H)}}{\partial T}\right) dH \tag{1}$$

На рисунках 1-2 представлены результаты экспериментальных исследований температурных и полевых зависимостей намагниченности синтезированных материалов, а также результаты расчета энтропии.

Максимальные значения ΔS_m наблюдаются вблизи комнатной температуры, что делает эти материалы перспективными для практического применения.

В заключение можно сказать, что изучение магнитокалорического эффекта (МКЭ) в контексте применения искусственного интеллекта для поиска и разработки новых термоэлектрических и калорических материалов в системе сплавов Гейслера открывает новые горизонты в области материаловедения. Искусственный интеллект позволяет эффективно анализировать большие объемы данных, выявлять закономерности и предсказывать свойства материалов, что значительно ускоряет процесс разработки.

Проведённый анализ позволяет утверждать, что сочетание искусственного интеллекта и исследования магнитокалорического эффекта в сплавах Гейслера открывает перспективы ДЛЯ создания новых высокоэффективных материалов, способствует что развитию энергосберегающих технологий.

Работа выполнена при финансовой поддержке Российского научного фонда (проект No 24-12-20016).

- [1] Agrawal, A., Choudhary, A., Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science, APL Materials, 4(5), (2016), 053208.
- [2] [2] Liu, J., et al., Machine learning for high-entropy alloys: Progress, challenges, and opportunities, Progress in Materials Science, 112, (2020), 100673.
- [3] Carrete, J., et al., Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling, Physical Review X, 4(1), (2014), 011019.

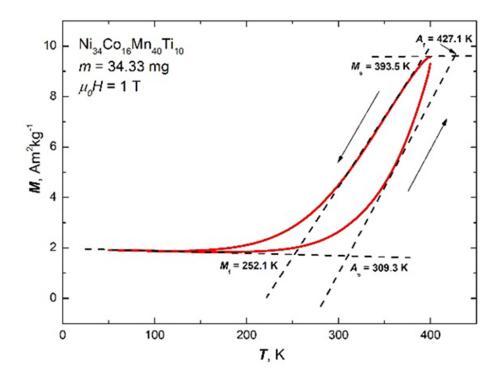
Магнитокалорические свойства сплавов Гейслера Ni-Co-Mn-Ti: экспериментальное исследование и перспективы применения

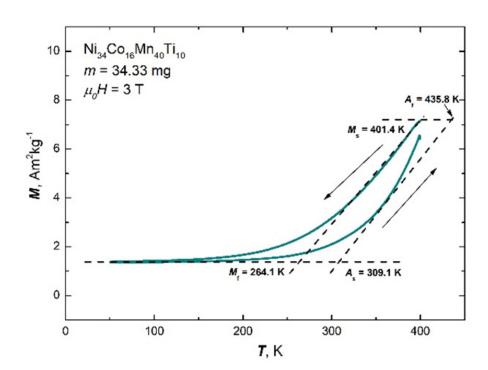
Утарбекова М.В., Оршулевич М.А., Таскаев С.В. Челябинский государственный университет, Челябинск, Россия e-mail: shchichko.marina.csu@gmail.com

Магнитокалорические материалы (МКМ) представляют значительный интерес для энергоэффективных технологий охлаждения, таких как магнитное охлаждение. Среди них сплавы Гейслера на основе Ni-Mn демонстрируют значительный по величине магнитокалорический эффект (МКЭ) благодаря магнитоструктурным фазовым переходам. Однако хрупкость этих интерметаллидов ограничивает их практическое применение. В данной работе исследованы новые сплавы Ni-Co-Mn-Ti, полностью состоящие из переходных металлов (all-d), которые обладают улучшенными механическими свойствами благодаря d-d гибридизации [1, 2].

В ходе работы были синтезированы поликристаллические сплавы Ni-Co-Mn-Ti с различным составом (например, $Ni_{34}Co_{16}Mn_{35}Ti_{15}$, $Ni_{34}Co_{16}Mn_{40}Ti_{10}$). Сплавы получены методом дуговой плавки в атмосфере аргона с последующим отжигом при 1173 К в течение 96 ч.

Микроструктурный анализ проведен с помощью сканирующей электронной микроскопии (РЭМ) и энергодисперсионной спектроскопии (ЭДС). Измерения намагниченности выполнены на вибрационном магнетометре Versa Lab Quantum Design в полях до 3 Тл и температурах 50–400 К. Рентгеноструктурные исследования проведены на дифрактометре BRUKER D8 ADVANCE (Си Кα-излучение).


Проведенный рентгеноструктурный анализ подтвердил однофазность и высокую кристалличность всех синтезированных сплавов.


Сплавы $Ni_{34}Co_{16}Mn_{40}Ti_{10}$, $Ni_{35}Co_{15}Mn_{37}Ti_{13}$ и $Ni_{37}Co_{13}Mn_{34.5}Ti_{15.5}$ демонстрируют фазовые переходы первого рода из слабомагнитного мартенсита в ферромагнитный аустенит.

Критические температуры (M_s , M_f , A_s , A_f) определены методом касательных. Например, для Ni₃₄Co₁₆Mn₄₀Ti₁₀: A_f уменьшается с 427.1 К (1 Тл) до 418.6 К (3 Тл), что указывает на существенное влияние магнитного поля на фазовый переход (рис.1).

Изотермическое изменение магнитной энтропии (ΔS_m) рассчитано по данным намагниченности с использованием соотношения Максвелла:

$$\Delta S_m(T, H) = \int_{H_i}^{H_f} \left(\frac{\partial M_{(T, H)}}{\partial T}\right) dH \tag{1}$$

 $Puc.1\ Tемпературные\ зависимости\ намагниченности\ для\ сплава\ Ni<math>_34Co_{16}Mn_{40}Ti_{10}\ в$ полях $1\ Tл\ u\ 3\ Tл.$

Максимальные значения ΔS_m наблюдаются вблизи комнатной температуры, что делает эти материалы перспективными для практического применения.

Подводя итоги, следует отметить, что сплавы системы Ni-Co-Mn-Ti значительный МКЭ, обусловленный демонстрируют наличием переходов. Критические температуры магнитоструктурных данных материалов обладают выраженной зависимостью от внешнего магнитного поля, что создает предпосылки для целенаправленного управления их функциональными характеристиками. Помимо этого, указанные сплавы обладают улучшенными механическими свойствами по сравнению с сплавами Гейслера, что расширяет перспективы их традиционными устройствах магнитного охлаждения. Дальнейшие применения В данной области должны быть сосредоточены исследования оптимизации химического состава сплавов с применением методов машинного обучения, а также на изучении мультикалорических эффектов.

Работа выполнена при финансовой поддержке Российского научного фонда (проект No 24-12-20016).

- [1] Z. Guan, J. Bai, Y. Zhang, J. Gu, X. Jiang, X. Liang, R. Huang, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Revealing essence of magnetostructural coupling of Ni-Co-Mn-Ti alloys by first-principles calculations and experimental verification, Rare Met 41 (2022) 1933–1947.
- [2] Z. Wei, E. Liu, Y. Li, X. Han, Z. Du, H. Luo, G. Liu, X. Xi, H. Zhang, W. Wang, G. Wu, Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys, Appl. Phys. Lett. 109 (2016), 071904.

Влияние фазового состава на микротвёрдость сплава TiNi в разных структурных состояниях

<u>Воробьёв Е.В.</u>¹, Чуракова А.А.^{1,2}

¹ Уфимский Университет Науки и Технологий, Уфа, Россия e-mail: z.vorobyov@mail.ru
² Институт физики молекул и кристаллов - обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук, Уфа, Россия e-mail: churakovaa_a@mail.ru

Сплавы титана и никеля также известные как «нитинол», занимают особое место в промышленности благодаря сочетанию уникальных функциональных свойств: эффекта памяти формы, сверхупругости, биосовместимости и высокой коррозионной стойкости [1, 2]. Благодаря данным свойствам область применения сплава TiNi постоянно расширяется [3]. Однако механические характеристики данного сплава напрямую зависят от микроструктуры, которая формируется в процессе термомеханической обработки. Одним из популярных методов интенсивной пластической деформации является равноканальное угловое прессование (РКУП). Данный метод позволяет сформировать в сплаве ультрамелкозернистую структуру с размером зерна 200-300 нм [4]. Предел прочности после РКУП может достигать 1400 МПа, а предел текучести 1100 МПа, что кратно выше исходного [5].

Исследования проводились на образцах сплава Ті_{49,55}Nі_{50,45} ат %. Были исследованы два структурных состояния: крупнозернистое (КЗ) и ультрамелкозернистое (УМЗ). КЗ структура получена путём выдержки сплава в печи при температуре 800 °C в течение одного часа с последующей закалкой в воде. УМЗ структура получена закалкой с последующим РКУП по маршруту Вс, при температуре 450 °C, углом пересечения каналов 120° и количеством проходов N = 4. Образцы для исследования были вырезаны н электроэрозионном станке, затем были проведены отжиги в диапазоне температур 100-650 °C. Рентгеноструктурный анализ проводился на при рентгеновском дифрактометре «Bruker Phaser-2» температуре. Диапазон углов исследования $2\theta = 20 - 100^{\circ}$. Микротвердость измерялась в 10 точках на каждом образце при нагрузке 200 г.

На рисунках 1, 2 представлены рентгенограммы для сплава TiNi в K3 состоянии.

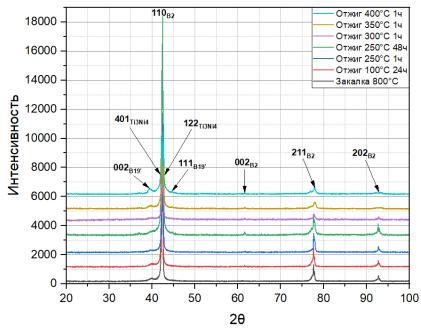


Рис. 1 – Рентгенограммы сплава TiNi в K3 состоянии после отжига при 100-400°C

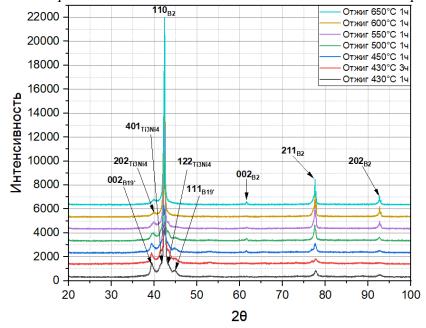


Рис. 2 – Рентгенограммы сплава TiNi в K3 состоянии после отжига при 430-650°C

В крупнозернистом состоянии сплав находится преимущественно в аустенитном состоянии. Стоит отметить, что с увеличением температуры отжига до $450\,^{\circ}$ С в исследуемом сплаве увеличивается объёмная доля мартенситной фазы B19', о чём свидетельствует рост интенсивности пиков, соответствующих данной фазе. Увеличение температуры отжига до $400\,^{\circ}$ С и выше способствует появлению на рентгенограмме пиков, соответствующих фазе Ti_3Ni_4 .

На рисунках 3, 4 представлены рентгенограммы сплава в УМЗ состоянии.

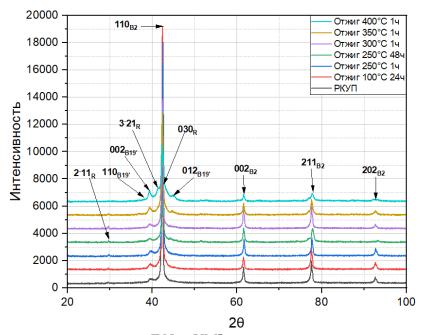


Рис. 3 – Рентгенограммы сплава TiNi в УМЗ состоянии после отжига при 100-400°C

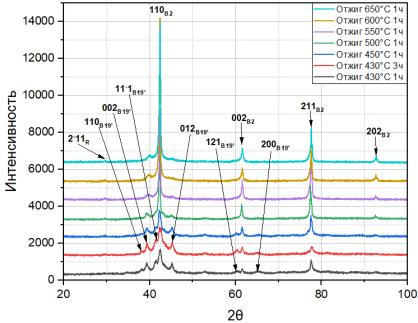
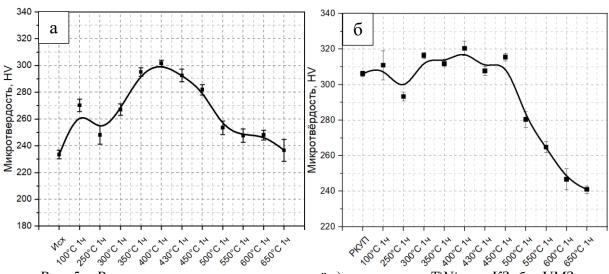



Рис. 4 – Рентгенограммы сплава ТiNi в УМЗ состоянии после отжига при 430-650°C

В УМЗ состоянии без последующего отжига сплав ТiNi находится преимущественно в аустенитном состоянии. Увеличение температуры отжига до 400 °C приводит к образованию двойного пика R – фазы (3-21) и (030) на месте пика (110) В2 аустенита. Дальнейшее увеличение температуры отжига до 430-450 °C приводит к увеличению объёмной доли мартенситной фазы, что подтверждается появлением дополнительных пиков, соответствующих В19' фазе ((110), (002), (11-1), (012), (121), (200)).

На рисунке 5 представлены результаты измерения микротвёрдости в исследуемых состояниях.

Puc. 5 - Peзультаты измерения микротвёрдости сплава TiNi: <math>a - K3, 6 - VM3

микротвёрдости результатам измерения сплава крупнозернистом рост увеличением состоянии виден значения cтемпературы отжига до 400 °C. Данное повышение значения твёрдости связано с образованием и ростом частиц Тіз Nі4 в ходе термообработки, что подтверждается результатами рентгеноструктурного анализа. Увеличение температуры отжига свыше 400 °C приводит к снижению микротвёрдости в связи с процессами рекристаллизации и уменьшения объёмной доли мартенситной фазы.

В УМЗ состоянии сплав TiNi демонстрирует высокое значение микротвёрдости до температуры отжига 450 °C, однако дальнейшее повышение температуры отжига негативно влияет на микротвёрдость. Такое поведение объясняется ростом зёрен в результате рекристаллизации при повышении температуры отжига выше 450 °C, а также уменьшением объёмной доли мартенситной фазы.

- [1] Гюнтер В. Э. Эффекты памяти формы и их применение в медицине / Гюнтер В. Э. [и др.]: Наука, 1992. 742 с
- [2] K. Otsuka, C. M. Wayman Shape Memory Materials. Cambridge University Press. 1999. 284 p.
- [3] Duerig, T., et al. *Biomedical Applications of Nitinol*. Materials Science and Engineering: A, 2019, 273–275, 149–160.
- [4] Lotkov, A., Baturin, A., Kopylov, V., Grishkov, V., & Laptev, R. (2020). Structural Defects in TiNi-Based Alloys after Warm ECAP. Metals, 10(9), 1154. doi:10.3390/met10091154
- [5] Столяров, В. В. Структурные особенности, механические свойства и эффект памяти формы в сплавах TiNi, полученных равноканальным угловым прессованием / В. В. Столяров, Е. А. Прокофьев, С. Д.

Прямые измерения адиабатического изменения температуры объемного и ленточных образцов сплава Гейслера Ni_{36.5}Co_{13.5}Mn₃₅Ti₁₅ в пиклических магнитных полях

<u>Кадырбардеев А.Т.</u>¹, Гамзатов А.Г.¹, Алиев А.М.¹, Qiao K.²

¹ Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия

² School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China

e-mail: anvar.kadirbardeev@gmail.com

В недавней работе [1] был обнаружен гигантский обратный МКЭ в сплаве Гейслера $Ni_{36.5}Co_{13.5}Mn_{35}Ti_{15}$ (ΔT_{ad1} =-15 К в магнитном поле 10 Тл). Добавление Ті приводит к увеличению прочностных характеристик, что повышает стабильность образцов при долговременном циклическом воздействии магнитных полей различной интенсивности.

В данной работе были исследованы температурные зависимости ΔT_{ad} объёмных и ленточных образцов сплава Ni_{36.5}Co_{13.5}Mn₃₅Ti₁₅ в циклическом магнитном поле 1.8 Тл (с f=0.2 Гц). На рис.1(A) приведены температурные зависимости ΔT_{ad} измеренные в режиме нагрева и охлаждения, а также данные для первого включения магнитного поля (красные точки). Величина максимума обратного МКЭ достигает ΔT_{ad1} =-1.58 К для первого цикла (красные точки), магнитного поля при приложении магнитного поля величина МКЭ уменьшается до ΔT_{ad} =-0.96 К (красная линия). Второй и третий образец представляли собой тонкие ленты со скоростью закалки 20 м/с и 40 м/с, соответственно (рис.1(В) и рис.1(С)), величина ΔT_{ad} для первого цикла в обоих лентах меняется слабо ΔT_{ad1} =-1.46 К (20 м/c) и ΔT_{ad1} =-1.55 К (40 м/c), но в циклическом магнитном поле обратный МКЭ сильно уменьшается (ΔT_{ad} =-0.42 К (20 м/с) и ΔT_{ad} =-0.43 К (40 m/c).

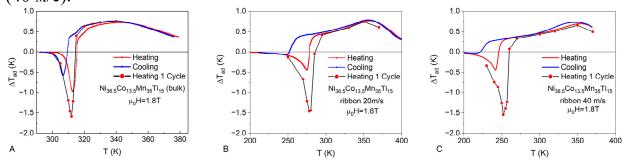


Рис 1. Температурные зависимости ΔT_{ad} сплава Гейслера Ni_{36.5}Co_{13.5}Mn₃₅Ti₁₅ в ииклическом магнитном поле 1.8 Тл.

Исследование выполнено за счет средств Российского научного фонда (проект № 24-43-00156, https://rscf.ru/en/project/ 24-43-00156/).

[1] B. Benedikt, et. al., Acta Materialia 282, 120460 (2025).

Влияние примесных фаз на величину и на стабильность магнитокалорического эффекта в оксиде хрома (IV)

<u>Чжао Ч.</u>¹, Кадырбардеев А.Т.², Грабой И.Э.¹, Гамзатов А.Г.²

¹МГУ имени М.В. Ломоносова, 119991, Москва, Россия,

²Институт физики ДФИЦ РАН, 367015, Махачкала, Россия,

е-mail: 2283266092@qq.com

Материалы с магнитокалорическим эффектом (МКЭ) представляют большой интерес в связи с возможностью создания на их основе магнитных холодильников и устройств для достижения очень низких температур (~0,001 К). Недавние исследования материалов с гигантскими значениями МКЭ показали, что величина адиабатического изменения температуры уменьшается с ростом частоты циклического магнитного поля. Кроме того, наблюдается деградация эффекта при долговременном воздействии что напрямую препятствует их практическому циклических полей, Поэтому изучение и понимание природы применению. свойств магнитокалорических деградационных материалов позволит синтезировать новые магнитокалорические материалы с контролируемыми свойствами. Было показано, что микроструктура, доменная структура, многофазность образца и фазовые границы играют важную роль в динамике фазового перехода первого рода. Кроме того, вследствие многофазности образца в нем реализуется магнитнофазовое разделение с разными объемными долями фаз. Учет магнитного фазового расслоения радикально изменяет поведение магнитокалорического эффекта и температурную зависимость его характеристик. В области сосуществования фаз объем отдельных фаз и границы разделения фаз зависят от магнитного поля и температуры.

Данная работа посвящена синтезу и исследованию роди «вторичных» фаз в частотной стабильности МКЭ в CrO_2 . Этот оксид хрома является ферромагнетиком с $T_c\sim391~$ K, обладает полуметаллическим типом проводимости и проявляет 100% спиновую поляризацией на уровне энергии Ферми.

Порошки CrO_2 синтезировали при высоких давлениях кислорода (110-150 атм.) в интервале температур 380-500°С, используя CrO_3 в качестве исходного вещества. Фазовый состав полученных образцов определяли с помощью $P\Phi A$. Было установлено, что состав порошков зависит от температуры отжига. Максимальное содержание CrO_2 наблюдали в узком температурном интервале в районе 420°С. В качестве примесных фаз выступали Cr_2O_5 (в случае понижения температуры) и Cr_2O_3 . (при повышении температуры). Это согласуется с данными равновесной фазовой диаграммы хром – кислород.

Измерения магнитной восприимчивости порошков с различными примесными фазами, показало, что увеличение количества СгО2 приводит к росту удельной намагниченности (рис. 1 (а)). В то же время тип примесных фаз так же оказывает существенное влияние. Так образцы, содержащие одинаковое количество Cr₂O₃ и Cr₂O₅, различаются по величине удельной намагниченности в два раза. Образцы, с меньшим содержанием CrO₂, помимо Cr_2O_5 небольшое количество демонстрируют большую величину удельной намагниченности сравнению с образцами, содержащими только Cr₂O₅ в качестве примесной фазы.

0.60 (б) Удельная намагниченность (ед. СГСМ/г) 0.55 90% CrO₂, 10% Cr₂O₃ T=293 K 40 0.50 70% CrO₂, 30% Cr₂O₃ 0.45 65% CrO₂, 20% Cr₂O₅ 0.40 15% Cr₂O₃ 20 70% CrO₂, 30% Cr₂O₅ 0.35 ਰੂ 0.30 0 0.25 90% CrO₂, 10% Cr₂O₃ 70% CrO₂, 30% Cr₂O₃ 0.20 -20 65% CrO₂, 20% Cr₂O₅, 0.15 15% Cr₂O₃ 0.10 -40 70% CrO₂, 30% Cr₂O₅ 0.00 -60 320 340 360 380 400 -20000 0 20000 Напряженность магнитного поля (э)

Рис.1. Удельная намагниченность образцов различного состава (a). Адиабатическое изменение температуры образцов различного состава (б).

Прямые измерения адиабатического изменения температуры (ΔT_{ad}) проводили, используя метод модуляции магнитного поля в магнитных полях 1.8 Тл при частоте 0.2 Гц и при H=1.2 Тл при частотах 1-20 Гц. Типичные зависимости в переменном магнитном поле 1.8 Тл при постоянной частоте 0.2 Гц представлены на рис. 1 (б). Как видим, наблюдается прямая корреляция величины МКЭ и фазового состава. Эти результаты хорошо согласуются с данными магнитных измерений Рис.1(а). Данный эффект, вероятно связан не только с различием магнитных свойств диамагнитного Cr_2O_5 и антиферромагнитного Cr_2O_3 , но и со способностью Cr_2O_3 образовывать когерентные границы с кристаллами CrO_2 .

Было установлено, что величина МКЭ в CrO_2 зависит от объемной доли вторичных фаз, при этом долговременное воздействие циклического магнитного поля на CrO_2 показывает высокую стабильность МКЭ без признаков деградации, что свидетельствует о перспективности данного материала для применения в магнитных охлаждающих устройствах.

Работа выполнена за счет гранта Российского научного фонда, проект № 24-12-00156, https://rscf.ru/project/24-43-00156/.

Магнитокалорический эффект сплава Tb_{0.25}Dy_{0.25}Ho_{0.25}Er_{0.25}Co₂ в слабых магнитных полях

Абдулкадирова Н.З., Гамзатов А.Г., Алиев А.М. Институт физики им.Х.И.Амирханова ДФИЦ РАН, Махачкала, Россия e-mail: nnurizhat@mail.ru

Магнитокалорический эффект (МКЭ) имеет перспективы не только для практического использования в технологии твердотельного охлаждения, но и является важным параметром с точки зрения изучения природы магнитных фазовых переходов. Особенно эффективным с точки зрения изучения фазовых переходов является исследование МКЭ в слабых магнитных полях. В настоящее время прямые измерения МКЭ в основном проводятся в умеренных или сильных полях, для оценки перспектив материалов для технологии твердотельного охлаждения. Прямые измерения исследований МКЭ в слабых магнитных полях проводились ранее редко, в силу имеющихся ограничений классического прямого метода измерения. При этом измерения в слабых магнитных полях могут дать обширную информацию о магнитных фазовых переходах.

Нами для проведения исследований МКЭ в слабых магнитных полях использован разработанный в лаборатории высоко чувствительный модуляционный метод измерения МКЭ, который позволяет провести измерения в магнитных полях в десятки эрстед. В настоящем исследовании представлены результаты прямых измерений адиабатического изменения температуры в высокоэнтропийном сплаве $Tb_{0.25}Dy_{0.25}Ho_{0.25}Er_{0.25}Co_2$ в слабых магнитных полях до 3 кЭ. Были проведены измерения температурных и магнитополевых зависимостей ΔT_{ad} , а также сдвига фазы между приложенным магнитным полем и температурным откликом образца. Исследование сдвига фазы в слабых полях позволяет определять род фазовых переходов. Было обнаружено, что в данных соединениях наблюдается фазовый переход первого рода. Проведен также скейлинговый анализ полученных результатов.

Работа выполнена при поддержке гранта РНФ № 24-12-00362, https://rscf.ru/en/project/24-12-00362/.

Импеданс и нелинейные свойства индуктивности с ферритовым сердечником вблизи точки Кюри

<u>Быбик М.С.</u>¹, Коледов В.В.¹, Орлов А.П.¹, Каленов Д.С.¹, Непочатых Ю.И.², Амиров А.А.³, Комлев А.С.⁴

¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия e-mail: ne.znachit.nichego@yandex.ru

² Донецкий физико-технический институт им. А.А. Галкина, ДНР, Донецк, Россия ³ Национальный исследовательский технологический университет «МИСИС», Москва, Россия

⁴ Московский государственный университет имени М. В. Ломоносова, Москва, Россия

Проблема релаксации параметра порядка в точке фазового перехода (ФП) второго рода поднята в работе [1], применительно к задаче о затухании ультразвука в жидком гелии вблизи λ-точки. Для нахождения уравнения состояния в [1] применено разложение Ландау по степеням параметра порядка, а для учета релаксации предложено применить кинетическое уравнение, именуемое в литературе уравнением Ландау-Халатникова. К изучению релаксации магнитного момента этот подход применяется нечасто, так как динамика намагниченности, как правило, изучается вдали от точки Кюри и подчиняется уравнению Ландау-Лифшица. В этом случае модуль вектора намагниченности предполагается практически независящим от внешнего поля, что не имеет место вблизи точки Кюри.

Интерес к проблеме релаксации намагниченности в точке Кюри резко возрос в последние годы, так как активно экспериментально изучается магнитокалорический эффект (МКЭ) для применений в области технологии магнитного охлаждения. МКЭ, который максимален вблизи ФП. В некоторых материалах обнаружены сильные эффекты зависимости МКЭ от частоты намагничивания [2], а также эффект самопроизвольной модуляции амплитуды высокочастотного пробного сигнала вблизи ФП в узком интервале внешних полей [3], которые нуждаются в адекватной трактовке. Очевидно, что кинетические эффекты при исследовании МКЭ должны быть связаны с кинетикой намагниченности вблизи точки ФП второго рода. Поэтому, цель настоящей работы заключается в создании методики экспериментального изучения кинетики изменения намагниченности на примере никель цинкового феррита 2000НН в быстро изменяющихся внешних полях и в разработке теоретической модели на основе разложения Ландау свободной энергии магнетика по параметру порядка и уравнения Ландау-Халатникова для описания результатов экспериментов по изучению релаксации намагниченности вблизи ФП второго рода.

Предлагаемая экспериментальная методика основана на измерении индуктивности катушки, намотанной на кольцевом сердечнике из феррита, в зависимости от температуры образца и частоты тока. Для измерения параметров индуктивности применена установка с термостатом,

поддерживающим образец вблизи точки Кюри. Импеданс индуктивности измеряется прибором Keysight E4990A в диапазоне частот от 20 Γ ц до 20 $M\Gamma$ ц.

В работе использовались образцы из никель-цинкового феррита марки $2000 HH - Ni_{0.32} Zn_{0.68} Fe_2O_4$ состава. Выбор материала обусловлен тем, что этот диэлектрический материал позволяет изучать динамику намагниченности при частотах до 10^7 Гц и, кроме того, имеет температуру фазового перехода второго рода в удобном диапазоне — около 90 °C. В эксперименте использованы кольца из этого материала диаметром от 6 до 30 мм и стержни диаметром 8 мм.

Описание кинетических эффектов при анализе временной зависимости намагниченности M(t) сводится к построению адекватной модели поведения параметров материала вблизи неустойчивости, вызванной $\Phi\Pi$. Для изучения термодинамических свойств образцов при $\Phi\Pi$ второго рода в настоящей работе использовано разложение функции свободной энергии Гельмгольца методом Ландау до четвертого порядка по намагниченности:

$$F = \frac{1}{2}\alpha M^2 + \frac{1}{4}\beta M^4 + \frac{1}{2}NM^2 - MH, \qquad (1)$$

где α_0 , α и β — магнитные модули $(\alpha = \alpha_0(T - T_c))$, N — фактор размагничивания, M — намагниченность образца, H — внешнее поле, T — текущая температура, T_c — температура точки фазового перехода.

Для получения термического уравнения состояния воспользуемся условием:

$$\frac{dF}{dM} = 0. (2)$$

Подставив свободную энергию (1) в (2), получим:

$$\alpha_0 (T - T_c) M + \beta M^3 + NM = H. \tag{3}$$

Для изучения кинетики процессов при $\Phi\Pi$ было взято уравнение Ландау-Халатникова [1]:

$$\frac{dM}{dt} = -\gamma \frac{dF}{dM},\tag{4}$$

где $\frac{dM}{dt}$ — изменение параметра порядка со временем, F — свободная энергия, γ — положительный коэффициент, характеризующий материал. Из уравнения (4) понятно, что $[\gamma] = c^{-1}$. Его физический смысл заключается в том, что γ показывает скорость протекания процессов при изменении параметра порядка. То есть, в этом приближении, изучении кинетики процессов сводится к нахождению γ .

Для проверки теоретических расчетов и для нахождения точки Кюри в ферритовых кольцах 2000НН были проведены измерения магнитной восприимчивости в температурном диапазоне от 20 до 120 °C в частотном

диапазоне от 20 Γ ц до 20 M Γ ц. Для изучения кинетики Φ Π в образцах феррита 2000HH в точке Кюри получим уравнение.

$$\frac{dM}{dt} = -\gamma(\beta M^3 - H(t)). \tag{5}$$

Сопоставление экспериментальных данных и теоретических оценок позволяет сделать оценку величины ү.

В настоящем докладе сообщается о следующих результатах:

- 1) Рассчитаны коэффициенты в разложении свободной энергии по М и в уравнении состояния для никель-цинкового феррита 2000НН.
- 2) Разработан экспериментальный метод оценки константы γ в уравнении Ландау-Халатникова, дающей оценку для максимальной скорости фазового перехода и опробован на примере ферритовых колец 2000НН.
- 3) Сделан вывод о том, что дальнейшая работа по усовершенствованию методики и развитию теории должна быть направлена на более качественную проверку подхода на основе уравнения Ландау-Халатникова для изучения динамики намагниченности вблизи точки Кюри в различных материалах в широком диапазоне изменения амплитуд полей, частот и температур. Должно быть продолжено изучение специфического нелинейного отклика индуктивности на слабые токи.

Исследования выполнены за счёт гранта Российского научного фонда № 25-19-00942, https://rscf.ru/project/25-19-00942/

- [1] Л.Д. Ландау, И.М. Халатников. Об аномальном поглощении звука вблизи точки фазового перехода второго рода. ДАН СССР, т. 96, С. 469 (1954).
- [2] A.M. Aliev, A.B. Batdalov, L.N. Khanov, V.V. Koledov, V.G. Shavrov, I.S. Tereshina, S.V. Taskaev. Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz. Journal of Alloys and Compounds, 676, 601-605. (2016).
- [3] Ю.И. Непочатых, В.Н. Варюхин, В.Г. Шавров, ФТВД, 34, №4, 54 (2024).

Секция А3

Общие вопросы физики фазовых переходов и критических явлений

Экспериментальная проверка концепции завершенного скейлинга

<u>Абдулагатов И.М.</u> 1 , Беляков М.Ю. 2 , Батырова Р.Г. 3 , Ибавов Н.В. 3

¹ Институт проблем геотермии и возобновляемой энергетики — филиал Федерального государственного бюджетного учреждения науки ОИВТ РАН, Махачкала, Россия e-mail: ilmutdina@gmail.com

² Институт проблем нефти и газа РАН, Москва, Россия ³ Институт физики ДФИЦ РАН, Махачкала, Россия

Работа проблеме асимметрии посвящена однокомпонентных жидкостей вблизи их критических точек. Хорошо известно, что фазовые диаграммы температура (T) – плотность (ρ) жидкостей демонстрируют выраженную асимметрию вблизи критической точки. Такая асимметрия характеризуется температурной зависимостью диаметра D, который определяется полусуммой плотностей на жидкой (L) и газовой (G) ветви кривой сосуществования. Вблизи критической точки обычно используются безразмерные отклонения OT критических значений. $D = (\Delta \bar{\rho}_{\rm L} + \Delta \bar{\rho}_{\rm G})/2$, где $\Delta \bar{\rho} = \rho/\rho_{\rm c} - 1$. В рамках различных теоретических подходов зависимости величины D от безразмерного отклонения температуры $\tau = T/T_c - 1$ отличаются.

Для среднеполевых моделей, например кубических уравнений состояния, будет линейное соотношение $D \propto -\tau$. Учет околокритических флуктуаций параметра порядка приводит к скейлинговским моделям. В данных моделях сохраняются степенные зависимости термодинамических характеристик, но с другими показателями. Появляются так называемые критические индексы: $\alpha = 0.11$, $\beta = 0.325$ И $\gamma = 2 - \alpha - 2\beta = 1.24$. скейлинговских моделей был предложен способ учета асимметрии $T-\rho$ фазовых диаграмм реальных жидкостей. Сначала предполагалось так называемое перемешивание независимых полей. Это привело к появлению в температурной зависимости диаметра D дополнительного члена, порядка $(-\tau)^{1-\alpha}$. В отличи от прямолинейного диаметра $-\tau$, такой член называется сингулярным диаметром. Наличие сингулярного диаметра смещает критическую плотность в сторону газовой ветви фазовой диаграммы, что согласуется с экспериментом.

Вместе с тем, идея перемешивания независимых полей имеет существенный дефект. Вблизи критической точки нарушается свобода выбора давления или химического потенциала в качестве зависимой величины, которая прямо следует из термодинамики. Для устранения проблемы была предложена новая концепция. Концепция устраняет теоретические нестыковки, но требует экспериментальной проверки. Заметим, что использование завершенного скейлинга меняет представление об асимметрии жидкостей. В частности, асимптотическая зависимость диаметра приобретает вид:

$$D = a_1 (-\tau)^{2\beta} + a_2 (-\tau)^{1-\alpha} + a_3 (-\tau) + \cdots.$$
 (1)

то есть появляется еще один член, порядка $(-\tau)^{2\beta}$. Собственно, проблема экспериментальной проверки сводится к вопросу, возможно ли наличие данного члена. Разумеется, были попытки такой проверки. Все они основаны на обработке экспериментальной зависимости $D(-\tau)$, которая извлекается из данных для $T-\rho$ кривой сосуществования. Однако такой способ имеет существенные изъяны. Выражение (1) представляет монотонную степенную функцию с близкими показателями. Возникают сомнения в статистической значимости коэффициентов a_i . Кроме того, выражение (1) является асимптотическим и непонятна область τ , где его можно применять, не привлекая поправок.

Здесь предлагается изменить подход, а именно перейти от диаметра D к величине $D_2 = D/(-\tau)^{1-\alpha}$. Используя (1) и соотношения между критическими индексами, для D_2 легко получить

$$D_2 = a_1 (-\tau)^{1-\gamma} + a_2 + a_3 (-\tau)^{\alpha} + \cdots$$
 (2)

В отличие от D величина D_2 не является монотонной. Если коэффициент a_1 отличается от нуля, зависимость $D_2(\tau)$ расходится в критической точке. Важно наличие экстремума. Эта особенность должна проявляться экспериментально, то есть след от члена $\propto (-\tau)^{2\beta}$ должен быть виден прямо из данных измерений, независимо от статистической обработки. Для проверки идеи использовались результаты исследования T- ρ двуокиси углерода (CO_2) в асимптотической окрестности вблизи критической точки. Измерения проводились методом квазистатических термограмм, который сопряжен с C_V измерениями вблизи критической

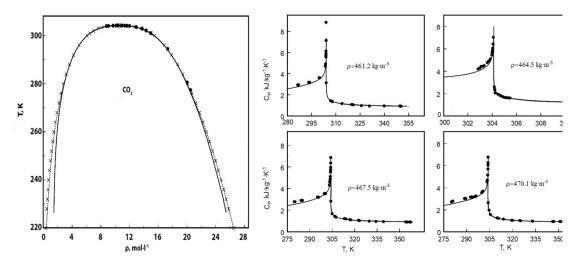
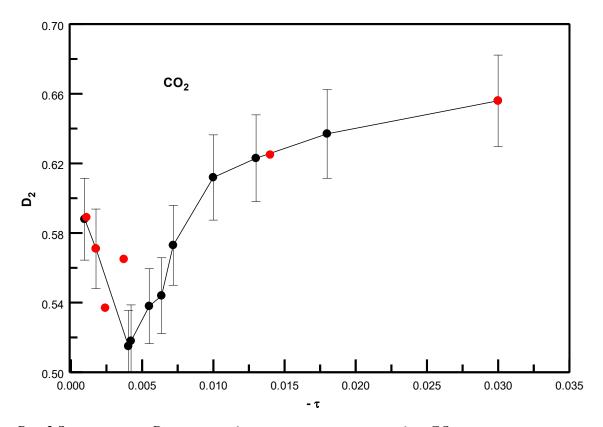



Рис.1 Зависимость T- ρ (слева) на кривой фазового перехода и C_V -T измерения вдоль вблиз критических изохор (сплошные кружочки) для CO_2 , вместе с данными других авторов.

точки. На Рис.1 приведены результаты одновременных изменений (в одном и том же эксперименте) T- ρ и C_V -T зависимостей для CO_2 .

Полученные данные были использованы для проверки соотношения (2), которая была получена на основе теории завершенного скейлинга. Результаты приведены на Рис.2.

Puc. 2 Зависимость D_2 от приведенной температуры - τ для CO_2 .

Исследование нестационарной теплоотдачи к перегретым компонентам биотоплив и к водным эмульсиям растительных масел

Волосников Д.В., Поволоцкий И.И., Скрипов П.В. Институт теплофизики УрО РАН, Екатеринбург, Россия e-mail: dima volosnikov@mail.ru

Переход от ископаемых жидких топлив к возобновляемым источникам энергии подразумевает развитие технологий комплексной переработки биомассы для более полной замены всего спектра нефтепродуктов, получаемых напрямую из нефти. На первом этапе переработки остатков части растений в биомассу используют технологии растительной гидротермальной переработки, сверхкритической экстракции гидролитического гидрирования [1]. На следующем этапе из полученной биомассы или напрямую из растительных масел в ходе процесса переэтерификации происходит получение биодизеля. Развитие химических методов флэш-синтеза для эффективной переработки биотопливо невозможно без знаний теплофизических свойств веществ в области перегретых состояний. Использование микрореакторов позволяет компактизировать системы переработки биомассы в биотопливо. За счет достаточной площади смешивания реагентов в микрореакторе можно производить биодизель в 10-100 раз быстрее по сравнению с обычными реакторами. По сравнению с обычными реакторами периодического действия в микрореакторах достигнуто более высокая степень конверсии за более короткое время и возможность организовать непрерывный цикл переработки [2]. Однако, переход на проточный тип химического реактора и минимизация объемов реагирующей смеси невозможен без наличия надежного массива данных.

Цель настоящей работы – исследование нестационарной теплоотдачи к импульсно перегретым образцам растительных масел в экспериментах с проволочным нагревателем-зондом при варьировании температуры проволочного зонда в диапазоне 75 – 650 °C и при увеличении концентрации дисперсной фазы (воды) до 20 мас.%.

В данной работе проведены исследования, направленные на получение новых знаний о нестационарной теплоотдаче к биотопливу на основе водных эмульсий рапсового, касторового и кукурузного масел. Опыты проведены в широкой области изменения температуры в условиях схожих с условиями переработки, получения и использования растительных масел в качестве биотоплив. В рамках метода изотермического воздействия опыты проведены при атмосферном давлении [3]. Методом нагрева проволочного зонда импульсом постоянного тока при до- и сверхкритических давлениях.

Исследован достижимый перегрев однородных жидкостей (рапсового масла и воды) и нестационарный теплоперенос в неоднородных жидкостях (водной эмульсии рапсового, касторового и кукурузного масел), в том

числе, в области перегретых относительно температуры равновесия жидкость—пар состояний как воды, так и растительных масел. Объектами исследования являлись образцы однородных топлив на основе растительных масел, а также гетерогенные жидкости — водные эмульсии указанных масел с содержанием влаги 0.035; 0.065; 1.2; 2.4; 5; 8.4; 10; 15; 20 мас.%.

Определены степени перегрева образцов (осущенного и товарного) рапсового пищевого масла холодного отжима (ГОСТ 31759-2021) и деионизированной воды с добавкой эмульгатора при трех значениях средней скорости их нагрева -10^5 , 10^6 и $5\cdot10^6$ К/с. Для достижения таких скоростей нагрева применен импульсный нагреватель с управляемой мощностью тепловыделения, выполненный в виде миниатюрного платинового нагревателя—зонда диаметром 20 мкм и длиной 1 см.

Разработана установка для исследования нестационарного теплообмена в компонентах композиционного топлива в масштабе малых времен (1–100) мс и размеров при высоких плотностях теплового потока (1–23) МВт/м², создаваемых с помощью быстродействующего прецизионного регулятора мощности [3]. Получение первичного электрического сигнала термограмм было синхронизировано с высокоскоростной видеозаписью, что позволило точно установить связь между приложенной тепловой нагрузкой и механикой процессов в исследуемых образцах жидкости. Разработан алгоритм и создано оригинальное программное обеспечение для получения и постобработки массива экспериментальных данных [4].

Полученные сведения востребованы при проектировании и создании установок для гидротермальной переработки, сверхкритической экстракции и гидролитического гидрирования биомассы, а также для развития технологий с использованием реакции переэтерификации в условиях микрореактора.

Исследование выполнено за счет гранта Российского научного фонда № 23-69-10006, https://rscf.ru/project/23-69-10006.

- [1] J. Gaidukevič, J. Barkauskas, A. Malaika, P. Rechnia-Gorący, et.al. // Chinese Journal of Catalysis V.39, pp. 1633–1645, (2018).
- [2] A. Tiwari, V.M. Rajesh, S. Yadav, Biodiesel production in micro-reactors: A review, Energy for Sustainable Development V.43, pp. 143–161, (2018).
- [3] D.V. Volosnikov, I.I.Povolotskiy, P.V. Skripov// Applied Thermal Engineering V.236, art. N 121532 (2024).
- [4] Губин А.А., Марчукова А.А., Поволоцкий И.И. и др. // Изв. РАН. Сер. физ. Т. 88. № 9. С. 1372. (2024)

Как осуществить квантовое запутывание двух поляритонных кубитов?

Елистратов А.А., Асриян А.Н.

Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, Росатом, Москва, Россия e-mail: andrei.a.elistratov@mail.ru

Бозе-Эйнштейновские конденсаты экситонных поляритонов возникают при температурах порядка нескольких кельвинов, допускают контролируемость состояния оптическими методами, могут быть взаимно синхронизированы по фазе за пикосекундные времена и имеют ряд других положительных аспектов. Все эти особенности делают конденсаты экситонных поляритонов перспективной платформой для квантовых вычислений. Предложено несколько возможных реализаций кубитов на данной платформе. Наибольшую известность получил предложенный в [1] дизайн, представляющий собой кольцо бозе-конденсата, создаваемое круглым пятном лазерной накачки и имеющее сегмент, затененный от лазерного излучения, в котором возникает неподвижный темный солитон, меняющий скачком фазу конденсата на р. Можно показать, что в такой конфигурации по часовой стрелке и против часовой стрелки будут течь два незатухающих круговых тока, сумма и разность которых будут являться квантовыми суперпозициями – квантовыми состояниями, имеющими два наинизших значения энергии. Нетрудно усмотреть в данной схеме близкую аналогию со сверхпроводящим кубитом, имеющим в составе своего замкнутого контура джозефсоновский переход. Расчеты и компьютерные симуляции показывают [1], что время релаксации предложенного поляритонного кубита Т₁ будет порядка 100 нс, что при времени однокубитных операций порядка 100 пс позволяет провести порядка 1000 операций. Это делает, на первый взгляд, поляритонные кубиты реальным игроком среди прочих платформ для квантовых вычислений. Наибольшие споры на данный момент вызывает возможность квантового запутывания поляритонных кубитов, И, соответственно, эффективного осуществления двухкубитных операций. работе [1] предложено В кубиты соосно один над другим, а взаимодействие располагать осуществлять за счет электромагнитного взаимодействия круговых сверхтоков, текущих в кубитах.

Возникшие трудности требуют фундаментального исследования вопросов формирования запутанных состояний двух поляритонных бозеконденсатов.

В данном докладе мы презентуем наши результаты по расчету эволюции запутанности двух поляритонных конденсатов, выращенных из двух изначально находившихся в белловском состояниии поляритонов с помощью бозе-стимулированного перехода частиц из теплового резервуара.

Мы Гросса-Питаевского стартуем уравнения типа cланжевеновскими стохастические уравнения, членами И выводим описывающие динамику спиновых компонент конденсатов. Далее, мы задаем распределение начальных условий с помощью соответствующей двухфотонной функции Вигнера и численно рассчитываем эволюцию спиновых компонент конденсатов во времени. Запутанность конденсатов оценивается с помощью критерия Хофмана-Такеучи.

Результаты получились следующими: исходные поляритоны сохраняют запутанность только в случае полной изоляции от телового резервуара, любые попытки вырастить из двух исходных запутанных поляритонов два запутанных конденсата с помощью бозе-стимулированного рассеяния из теплового резервуара приводят с ростом плотности конденсатов к нарушению критерия запутанности. Этот результат имеет место даже в отсутствии шумов, создаваемых резервуаром. При учете шумов ситуация усугубляется, т. е. критерий запутанности с ростом плотности нарушается намного раньше.

Отрицательность результатов изложенного подхода «в лоб» говорит о необходимости дальнейшей разработки данного теоретического направления. Актуальна проблема поиска степеней свободы, сохраняющих запутанность в процессе эволюции бозе-эйнштейновских конденсатов.

[1] Yan Xue, Igor Chestnov, Evgeny Sedov, Evgeniy Kiktenko, Aleksey K. Fedorov, Stefan Schumacher, Xuekai Ma, and Alexey Kavokin, Split-ring polariton condensates as macroscopic two-level quantum systems, Phys. Rev. Research **3**, 013099 (2021).

Исследование влияния наноразмерной оксидной добавки на структурные фазовые переходы в нанокомпозитной ионной системе 0.5Na₂SO₄ – 0.5Al₂O₃

<u>Атаев М.Б.</u>¹, Гафуров М.М.¹, Рабаданов К.Ш.¹, Амиров А.М.¹, Кадиев М.В.¹, Ковалев Д.Ю.²

¹ Институт физики ДФИЦ РАН, Махачкала, Россия
e-mail: a_mansur@mail.ru

² Институт структурной макрокинетики и проблем материаловедения им. А.Г.
Мержанова РАН, Черноголовка, Россия

Смеси на основе солей щелочных металлов находят широкое применение в самых различных областях науки и техники. Актуальными являются разработки альтернативных электролитных систем, таких как натрий (Na)- ионные аккумуляторы, которые благодаря обилию натрия, низкой стоимости и сопоставимым характеристикам представляются литий-ионным многообешающей заменой аккумуляторам. традиционные натриевые батареи на основе органического жидкого электролита сталкиваются с серьезными проблемами безопасности, такими как утечка, термическая нестабильность и риск воспламенения [1-2]. В отличие от них, твердые электролиты предлагают высокую термическую стабильность и отсутствие риска утечек и взрывов, что делает их идеальными для создания безопасных и стабильных твердотельных Naионных аккумуляторов. Поиск композитных электролитов с высокой ионной проводимостью является ключевым направлением в области ионики твердого тела, однако существующие композитные твердые электролиты на солей натрия оксидов, демонстрируют И не всегда удовлетворительные характеристики, что подчеркивает необходимость дальнейших исследований в этой области [3-4].

Целью работы было изучение методом рентгеновской дифракции влияния добавок наноразмерного γ -Al₂O₃ (удельная поверхность S_{yo} =120м²/г, средний размер зерна r =15-20 нм) на фазовый состав, структуру и структурные фазовые переходы в ионной системе 0,5Na₂SO₄ − 0,5Al₂O₃ (соотношения в мольных долях), приготовленной по двум разным методикам: «керамической» (спеканием) (образец №1) и методом механоактивации (механоактивация в течение 180 минут) (образец №2). При этом массовые доли исходных компонентов (C, wt%) составили: C_{Na2SO4} = 58,21%, C_{Al2O3} = 41,79%. Измерения проводились при трех температурах последовательно: T=25°C (298K), 190°C (463 K) и 280°C (553 K).

Структура сульфата натрия и его модификаций достаточно хорошо известна и изучена в мировой литературе [5-8] и общепринята следующая последовательность фазовых переходов: Fddd (фаза V) \rightarrow 227 °C \rightarrow Cmcm (фаза III) \rightarrow 246 °C \rightarrow Pbnm (фаза II) \rightarrow 256 °C \rightarrow P63/mmc (фаза I). Фаза III может быть быстро охлаждена из расплава до комнатной температуры и

сохранятся метастабильной достаточно долгое время в сухой среде, без доступа влаги [6]. Что касается фазы II, в [8] указали, что после нескольких циклов нагрева-охлаждения, наблюдался только одни фазовый переход III \rightarrow I выше 250 °C при нагревании и обратимый I \rightarrow II и необратимый II \rightarrow III переходы в области 230°C при охлаждении.

На рисунках 1 (a-d) и 2 (a-c) представлены дифрактограммы $0.5 \cdot \text{Na}_2 \text{SO}_4$ - $0.5 \cdot \gamma \cdot \text{Al}_2 \text{O}_3$ приготовленных по «керамической» методике и методом механоактивации соответственно. Пики на 40, 58 и 73^0 2 Θ – это рефлексы от (011), (002) и (112) плоскостей W - нагревателя соответственно.

В таблице 1 приведены уточненные параметры решетки и примерное содержание каждой из фаз включая и аморфную после проведенного количественного уточнения структур методом Ритвельда.

В образце №1 (рисунок 1) для всех трех температур обнаружены следующие фазы: Na_2SO_4 , Fddd (фаза V); Na_2SO_4 , Cmcm (фаза III); γ -Al $_2O_3$, Fd-3m; α -Al $_2O_3$ (корунд), R-3c. В образце №2 (рисунок 2) при T=25 0 C и 190^0 C помимо фазы γ -Al $_2O_3$, Fd-3m обнаружены те же фазы сульфата натрия: Na_2SO_4 , Fddd (фаза V) и Na_2SO_4 , Cmcm (фаза III). При 280^0 C обнаруживается дополнительная высокотемпературная фаза P63/mmc (фаза I), что соответствует литературным данным.

Как, и указано в литературе, фаза III оказалась достаточно стабильной со временем. После охлаждения, измельчения, истирания в агатовой ступке и последующего хранения не произошло превращения метастабильной фазы III в основную, стабильную фазу V. Однако, в отличие от литературных данных по фазовым превращениям чистого Na₂SO₄, в нашем случае с композитом (рисунок 1b, с), нагрев образца не привел к превращению фаз V и III в более высокотемпературные фазы II и/или I. Вероятнее всего, фаза III образовалась в порах γ -Al₂O₃, куда Na₂SO₄ проник, будучи в расплавленном состоянии в процессе приготовления образца, на межфазной границе Na₂SO₄ - Al₂O₃ при спекании и последующем охлаждении нанокомпозита. Ee стабилизацию онжом межфазным взаимодействием на границе Na₂SO₄ - Al₂O₃. Можно предположить, что в результате спекания композита сульфат натрия распределился по поверхности наноразмерных частиц оксида алюминия и в его порах, частицы сульфата натрия значительно уменьшились в размерах, в результате поверхностная энергия этих малый частиц могла быть настолько большой, что термодинамически равновесной фазой могла оказаться метастабильная высокотемпературная фаза III. Кроме того, возможно данная фаза III была «заморожена» в нанокомпозите. Al₂O₃ значительно замедлил скорость фазового перехода в композите.

Что же касается образца №2, то видно, что при достаточно длительной механоактивации также происходит образование фазы III, но она уже не является настолько стабильной и при нагреве до 280° С почти полностью переходит в фазу I.

Таблица 1. Уточненные значения параметров решетки и содержание (С, wt%) обнаруженных фаз, в т.ч. и аморфной (А%) в образцах 0,5·Na₂SO₄- 0,5·Al₂O₃, а также значения R-факторов (факторов расходимости)

уточнения.												•		
Na ₂ SO ₄ , Fddd] Jq	Na ₂ SO ₄ , Cmcm	mcm	Na ₂ SO ₄ , P63/mmc	mmc	γ -Al ₂ O ₃ , Fm-3m	3m	α -Al ₂ O ₃ , R-3c	3с	T , ${}^{0}C(K)$	R_p	R_{wp}	СО	A%
Параметры	ر; و ر	Параметры	C,	Параметры	, Ç,	Парамстры	۲,	Параметры	C,				ц	
решетки	wt%	решетки		решетки	wt%	решетки	wt%	решетки	wt%					
a = 5.862(1) Å	14,0(5)	a = 5,6023(8) Å	31(1)	ı	1	a= b=	33 (1)	a = b = 4,7601(7) Å	7,0(3)	25 (298)	17,5	22,0	1,46	15(1)
€		A (1)056,8 = 0				c = 7.908(4) A		C = 13,003(3) A						
$\alpha = \beta = \gamma = 90^{\circ}$		c=6.9698(8) A $\alpha=\beta=\gamma=90^{\circ}$				$\alpha = \beta = \gamma = 90^{\circ}$		$\alpha=p=90^{\circ}$ $\gamma=120^{\circ}$						
a= 5,870(1) Å	13,7(5)	a= 5,6065(8) Å	32(1)			a= b=	34,1 (1)	a= b=4,7654(7) Å	6,7(3)	190 (463)	16,6 21,2	-	1,35	14(1)
b= 9,843(1) Å		b= 8,983(1) Å				c = 7.916(5) Å		c = 13,007(3) Å						
c=12,325(2) Å		c = 6,9940(9) Å				$\alpha = \beta = \gamma = 90^{\circ}$		$\alpha=\beta=90^{0}$						
		$\alpha=\beta=\gamma=90^{\circ}$						$\gamma = 120^{0}$						
a=5,873(1) Å	12,2(4)	a=5,6072(8) Å	31(1)	1		a= b=	34,9(1)	a= b= 4,7685(8) Å	5,8(2)	280 (553)	15,9 20,7	20,7	1,27	16(1)
b = 9.870(2) Å		b=9,012(1) Å				c = 7,915(4) Å		c = 13,011(4) Å						
c = 12,343(2) Å		c = 7,0131(9) Å				$\alpha = \beta = \gamma = 90^{\circ}$		$\alpha=\beta=90^{\circ}$						
		$\alpha=\beta=\gamma=90^{0}$						$\gamma = 120^{0}$						
a= 5,8548(9) Å	40(2)	a= 5,595(7) Å	12(1)	1		a=b=c=7,92(2) Å	41,8 (2)		-	25 (298)	13,7	20,3	20,5	5(2)
b= 9,806(1) Å		b= 8,95(1) Å				$\alpha = \beta = \gamma = 90^{\circ}$								
c = 12,290(1) Å		c=6,960(7) Å												
		$\alpha=\beta=\gamma=90^{\circ}$												
	+	\$ \(\frac{1}{2}\)	(5):			1 - 700/01	6			100 (4/2)			-	(5)
a = 5,869(1) A	(7)14	a = 5,01(1) A	(1)11			a = b = c = 7,98(2) A	41,8(2)			190 (463)	c,cI	21,9	10,1	0(7)
b= 9,880(1) Å		b= 9,03(1) Å				$\alpha = \beta = \gamma = 90^{\circ}$								
c = 12,340(2) Å		c=7,003(8) Å												
		$\alpha=\beta=\gamma=90^{\circ}$												
a = 5.872(2) Å	17(1)	a= 5,647(9) Å	2,5(4)	a= b= 5,3978(8) Å	33(1)	a = b = c = 7,98(1) Å	41,8 (2)		1	280 (553)	13,3	19,4	12,7	5(2)
b = 9.899(2) Å		b= 9,00(1) Å		c = 7,223(2) Å		$\alpha = \beta = \gamma = 90^{\circ}$								
c = 12,351(3) Å		c = 7,10(1) Å		$\alpha=\beta=90^{\circ}$										
		$\alpha=\beta=\gamma=90^{\circ}$		$\gamma = 120^{0}$										
)		,	,	_							

Образец №1 – образец, приготовленный по «керамической» методике (спеканием). Образец №2 – образец, приготовленный методом механоактивации.

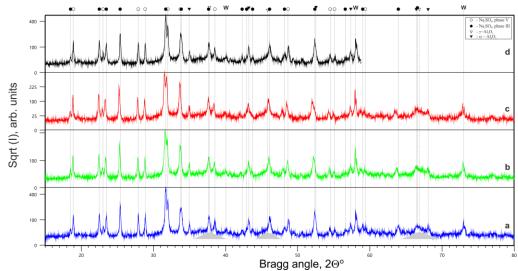


Рисунок 1 - Дифрактограмма образца №1; $\mathbf{a} - T = 25^{\circ} \text{C}$ (298K), $\mathbf{b} - T = 190^{\circ} \text{C}$ (463 K), $\mathbf{c} - T = 280^{\circ} \text{C}$ (553 K), $\mathbf{d} - T = 25^{\circ} \text{C}$ (298K), повторно после нагрева.

о- Na₂SO₄ фаза V; • - Na₂SO₄ фаза III; ∇ - γ-Al₂O₃, серые пики - уточненные профили рефлексов (222) (400) (440); ∇ - α-Al₂O₃; ∇ - пики W-нагревателя.

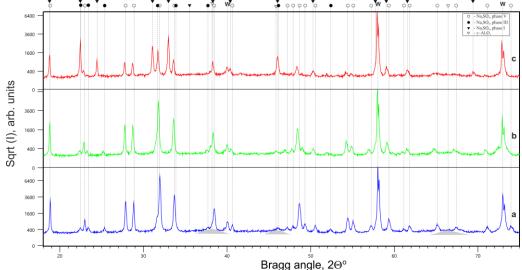


Рисунок 2 - Дифрактограмма образца №2; $\mathbf{a} - T = 25^{\circ} \text{C}$ (298K), $\mathbf{b} - T = 190^{\circ} \text{C}$ (463 K), $\mathbf{c} - T = 280^{\circ} \text{C}$ (553 K).

- о- Na₂SO₄ фаза V; - Na₂SO₄ фаза III; ▼ Na₂SO₄ фаза I; ∇ γ -Al₂O₃, серые пики уточненные профили рефлексов (222) (400) (440); **w** пики W-нагревателя.
- [1] T.L. Kulova, I.M. Gavrilin [et al.], Rus. J. of Phys. Chem. A. 98, 771 (2024).
- [2] Q. Guo, S. Han, Y. Lu, [et al.], Chin. Phys. Lett. 40, 028801 (2023).
- [3] F. Xie, Y. Lu, L. Chen, Y.S. Hu, Chin. Phys. Lett. 38, 118401 (2021).
- [4] N.F. Uvarov, A.S. Ulihin [et al.], Adv. Nanomat. Catal. Energy. 393 (2019).
- [5] S.M. Bobade, P. Gopalan, A.R. Kulkarni, Ionics **15**, 353 (2008).
- [6] B.N. Mehrotra, Z. Krist. Cryst. Mater. 155, 159 (1981).
- [7] V.Y. Proydakova, V.V. Voronov [et al.], Russ. J. In. Chem. 67, 970 (2022).
- [8] Y. Saito, K. Kobayashi, T. Maruyama, Thermochim. Acta 53, 289 (1982).

Фазовый переход в спин-бозонной модели: ренормгрупповой анализ в спиновой диаграммной технике

<u>Ремизов С.В.</u>^{1,2,3}, Васин М.Г.¹, Елистратов А.А.¹

 1 Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова (ФГУП «ВНИИА»), Москва, Россия

² Институт радиотехники и электроники (ИРЭ) РАН, Москва, Россия ³ Национальный исследовательский университет «Высшая школа экономики» (НИУ ВШЭ), Москва, Россия e-mail: sremizov@gmail.com.ru

В связи с успехами в создании квантовых устройств, в частности, кубитов, большое внимание привлекают вопросы релаксации декогеренции в таких системах в результате связи с диссипативным окружением. Одним из инструментов, используемых при исследовании такого рода процессов, является спин-бозонная модель. В этой модели внешнее окружение рассматривается как бозонный резервуар, спектральной характеризуемый плотностью состояний, имеющей степенной характер $I(\omega) \propto \omega^{s}$. В зависимости от силы связи между двухуровневой системой и окружением, при $s \le 1$ и при нулевой температуре наблюдается квантовый фазовый переход между делокализованной фазой, в которой может осуществляться квантовое туннелирование между двумя состояниями, и локализованной фазой, в которой система ведет себя, по сути, классическим образом [1].

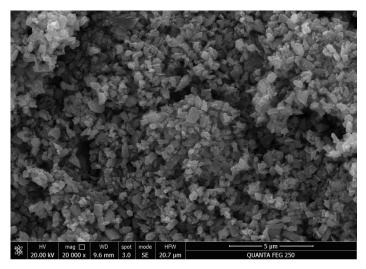
Существуют различные подходы для описания свойств спин-бозонной модели. В частности, для численных расчётов может использоваться квантовый метод Монте-карло [2], а для проведения аналитических вычислений могут использоваться различные схемы фермионизации [3] или бозонизации [4], применяемые для спиновой подсистемы. Основной сложностью в такого рода подходах является необходимость учёта дополнительных условий, возникающих при расширении гильбертова пространства в результате перехода от спиновых операторов к бозонным или фермионным.

В данной работе мы применили спиновую диаграммную технику [5] для описания взаимодействия спина с внешним окружением. Данная техника позволяет явным образом учитывать неабелев характер спиновых операторов. Мы предполагаем, что случайное внешнее поле, соответствующее окружению, ортогонально внешнему полю, приложенному к спину. В рамках такого подхода нами были получены выражения для перенормировки как взаимодействия спина и окружения, так и приложенного поля. Данные выражения позволили построить уравнения ренормгруппы и описать критическую динамику вблизи квантового фазового перехода.

Полученное уравнение для перенормировки взаимодействия спина с приложенным внешним полем согласуется с известным результатом [1]. Уравнение для перенормировки взаимодействия спина с внешним окружением получено впервые и согласуется с полученным нами другим методом с использованием фермионов Майораны [6].

- [1] A.J.Legett, et. al., Rev. Mod. Phys., **59**, 1, (1987).
- [2] A.Winter, et. al., Phys. Rev. Lett. **102**, 030601 (2009).
- [3] A.M.Tsvelik, Phys. Rev. Lett. **69**, 2142 (1992); A.A.Abrikosov, Physics **2**,5 (1965).
- [4] T.Holstein, H.Primakoff, Phys. Rev. **58**, 1098 (1940); J.Schwinger, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
- [5] Ю.А.Изюмов, Ю.Н.Скрябин, Статистическая динамика магнитоупорядоченных систем, Наука, Москва (1987).
- [6] M.G.Vasin, et. al., arXiv:2501.12457 (2025).

Отражение электромагнитной волны от порошков VO_2 и $V_{0,985}W_{0,015}O_2$ в СВЧ диапазоне 8-12 ГГц при фазовом переходе


<u>Казаков Д.Ю.</u>*, Бычков И.В., Зотов И.С., Фазлитдинова А.Г., Толкачев В.А.

Челябинский государственный университет, Челябинск, Россия *e-mail: danielatk304@yandex.ru

Исследования материалов с фазовым переходом металл-полупроводник продолжают интересовать научное сообщество благодаря их большому потенциалу в технике. Диоксид ванадия занимает особое место среди них, обладая уникальной температурой фазового перехода около 67 °C, что делает его идеальным кандидатом для практического применения. Уникальные свойства диоксида ванадия (VO₂) открывают путь к созданию передовых материалов и устройств, включая инновационные компоненты для сверхвысокочастотной техники, способные повысить производительность и энергоэффективность систем связи и обработки сигналов. Особый интерес вызывает легирование диоксида ванадия вольфрамом, которое позволяет управлять температурой фазового перехода, снижая или повышая её в зависимости от концентрации легирующего элемента. Не прекращаются исследования относительно взаимодействия подобных структур с электромагнитными волнами различных частотных диапазонов [1]. Это направление науки открывает перспективы для разработки новых материалов и устройств, способных динамически подстраиваться под внешние условия, что обещает трансформировать современные технологии обработки, передачи и хранения информации.

Нами проведены исследования отражения электромагнитных волн в сверхвысокочастотном (СВЧ) диапазоне 8 - 12 ГГц на образцах нанодисперсного порошка диоксида ванадия VO_2 и порошка диоксида ванадия, легированного вольфрамом $V_{0,985}W_{0,015}O_2$. Температура перехода металл - полупроводник у такой композиции близка к комнатной и составляет 30 °C. В эксперименте снимались температурные зависимости мощности отраженного электромагнитного излучения диапазона 8-12ГГц, при этом образцы нагревались от комнотной температуры (23°C) до температуры 80°C. Размеры частиц первого образца составляли 100-200 нм, чистота более 99.9%. Размеры частиц второго образца составляли 3-5 мкм.

Электронная микроскопия данных порошков представлена на рис. 1 и рис. 2 соответственно. Рентгеновская дифрактометрия образцов на рис. 3.

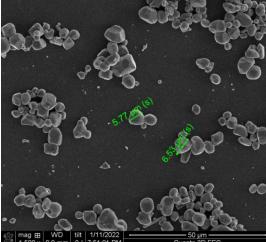


Рис.1.Электронная микроскопия порошка VO₂.

Рис.2. Электронная микроскопия порошка $V_{0,985}W_{0,015}O_2$.

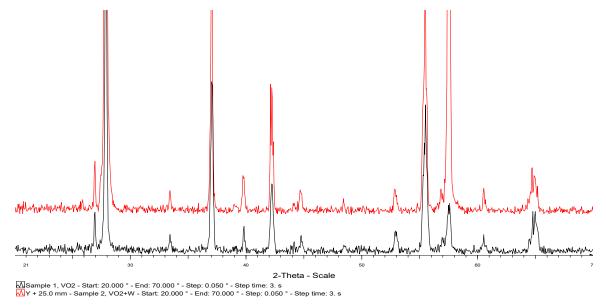


Рис.3. Рентгеновская дифрактометрия порошков VO_2 (красная) и $V_{0,985}W_{0,015}O_2$.

Из рентгенографии видно, что в легированном образце диоксида ванадия некоторые атомы ванадия замещены атомами вольфрама. Схема установки для исследования показана на рис. 4.

Для генерации и приема электромагнитных волн использовался «измеритель модуля коэффициента передачи и отражения P2M-40» производства АО "НПФ "Микран". Общий вид прибора представлен на рис. 5. Это оборудование позволяет генерировать высокочастотные электромагнитные волны в диапазоне частот от 10 МГц до 40 ГГц, а так же обеспечивает измерение мощности падающей, прошедшей через исследуемый объект и отраженной волн. [2].

Для измерения температуры использовалась термопара с терморегулятором TPM500 производства ООО «ТД Овен-К». Размеры применяемых

волноводов составили 23*10 мм. Длина СВЧ тракта — 15 см. Поглотитель СВЧ волны на конце тракта не применялся, исследования температурных зависимостей мощности отраженной волны проводились на открытом конце волновода.

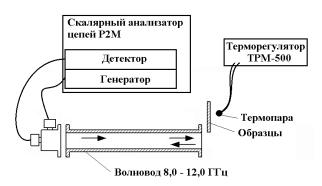


Рис. 4. Схема измерительной установки.

Рис.5. Общий вид прибора Р2М-40

Исследуемые порошки размельчались в однородный слой толщиной около 2 мм.

Было проведено несколько измерений с порошками, а также было зафиксировано отражение открытого волновода. Его присутствие можно объяснить краевыми эффектами, а также несовершенством внутреннего покрытия тракта, мест соединений. Данные «паразитные» отражения никак не исключались, поскольку не оказывали существенного влияния на исследуемые температурные зависимости.

Мощность отраженной волны у порошка $V_{0,985}W_{0,015}O_2$ показала малую зависимость от температуры. Значения настолько близки, что на графике трудноразличимы. Напротив, мощность отраженной волны от порошка VO_2 изменялась значительно. Результаты измерений приведены на рис. 6, рис. 7.

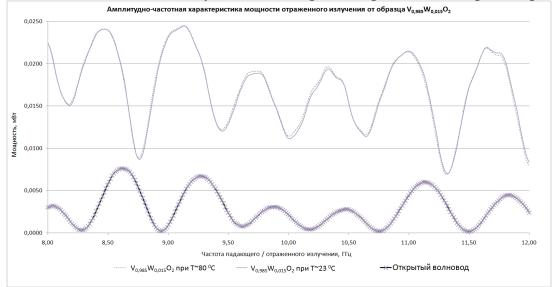


Рис. 6. Зависимость мощности отраженного излучения от частоты при разных температурах порошка $V_{0.985}W_{0.015}O_2$.

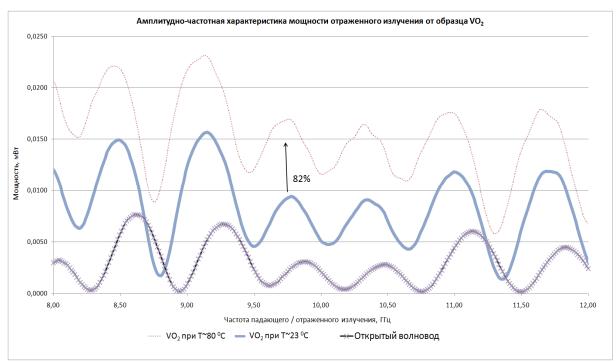


Рис.7.Зависимость мощности отраженного излучения от частоты при разных температурах порошка VO₂.

В работе было установлено, что средняя мощность энергии отраженного излучения в диапазоне радиоволн 8,0-12,0 ГГц для образца VO_2 в полупроводниковом состоянии составила 0,0083 мВт, в проводящем состоянии -0,0151 мВт. Таким образом, среднее изменение составило 82%. Этот факт может быть использован при проектировании новых переключающих радиоустройств СВЧ диапазона или создания новых технологичных покрытий. Также установлено, что отражение у образца $V_{0,985}W_{0,015}O_2$ имеет малую зависимость от температуры.

Список литературы

- [1] M. Larciprete, D. Ceneda, D. Scirè, M. Mosca, D. Persano Adorno, S. AbediniDereshgi, K. Aydin, R. Macaluso, R. Li Voti, C. Sibilia, T. Cesca, G. Mattei, M. Centini. VO2 Tungsten Doped Film IR Perfect Absorber. EPJ Web Conf. 287 14009 (2023) https://doi.org/10.1051/epjconf/202328714009
- [2] ФГИС «Аршин». Средство измерения, реестровый номер 53450-13. Описание типа СИ. URL:https://fgis.gost.ru/fundmetrology/api/downloadfile/46b65a9a-a0c6-472c-ac57-0e5a74ca6dc1 (дата обращения: 06.06.2025).

Исследование низкотемпературных структурных фазовых переходов в координационных соединениях методами рентгеновской дифракции и полного рентгеновского рассеяния

Цымбаренко Д.М.

МГУ имени М.В. Ломоносова, Химический факультет, Москва, Россия e-mail: tsymbarenko@inorg.chem.msu.ru

Координационные соединения металлов с органическими лигандами активно исследуются в связи с их различными функциональными свойствами — магнитными, люминесцентными, каталитическими и т. д. Эти функциональные свойства являются структурно-чувствительными и определяются В первую очередь координационными окружением центрального Исследование кристаллической иона. структуры соединений основном координационных В проводят при низких температурах 100-120К. При повышении температуры наличие структурноорганических лигандов зачастую приводит активации подвижности отдельных групп атомов в структуре соединений, снижению интенсивности дифракционной картины и затрудняет анализ структуры соединений. Кроме того, в ряде случаев происходят структурные фазовые переходы первого и второго рода, заключающиеся в малых изменениях атомов, приводящих, однако, положения к изменению симметрии структуры.

В данной работе с использованием методов политермической рентгеновской дифракции в диапазоне 80-500К на монокристаллах и поликристаллических порошках исследованы структурные фазовые переходы 1го и 2го рода в серии координационных соединений молекулярного цепочечного, слоистого и каркасного строения [1-3]. Предложены подходы к оценке структурного параметра порядка и критической температуры.

Детали изменения локальной структуры исследованы с помощью метода полного рентгеновского рассеяния с анализом функции парного распределения (PDF). Разработан оригинальный подход к получению данных полного рентгеновского рассеяния на лабораторном монокристальном дифрактометре [4].

- [1] D. M. Tsymbarenko et al., Polyhedron **30**, 599–605 (2011).
- [2] М.П. Кендин, К.А. Лысенко, Д.М. Цымбаренко, ЖСХ 64, 07594 (2023).
- [3] M. Kendin et al. Crystal Growth & Design. 21, 6183–6194 (2021).
- [4] D. Tsymbarenko et al. J. Appl. Cryst. 55, 890–900 (2022). Front Cover.

Разработка стимул-чувствительных композитных структур, использующих фазовые переходы полимера PNIPAM для магнитоуправляемой доставки лекарств

Колюшенков М.А., Амиров А.А., Низамов Т.Р.

Национальный исследовательский технологический университет «МИСИС» e-mail: koliushenkov.ma19@physics.msu.ru

Ключевая концепция тераностики — разработка «умных» систем доставки лекарств с чувствительностью к различным стимулам. Такие системы способны избирательно реагировать на внешние и внутренние физико-химические воздействия в организме.

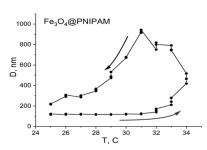


Рисунок 1. График зависимости размера композитных частиц Fe₃O₄(a)PNIPAM от температуры.

В данном исследовании представлены характеристики результаты синтеза И функциональных нанокомпозитов на основе наночастиц магнетита для потенциального применения в биомедицинской тераностике. Наночастицы магнетита были получены методом «контролируемого живого роста» в полиольной среде [2, 3], что позволяет точно регулировать их размер и морфологию. Было исследовано влияние различных параметров

синтеза на структурные и морфологические свойства наночастиц, что демонстрирует гибкость и адаптивность предложенного подхода. Показано, что полученные частицы могут использоваться для гипертермии (ILP ≈ 2 $H\Gamma H \cdot M^2/K\Gamma$). Ещё одним преимуществом метода является функционализации магнитных наночастиц различными полимерами с использованием нитродофамина. Полученные наночастицы использовались в качестве ядер для создания стимул-чувствительных нанокомпозитных оболочкой. материалов полимерной Частицы были покрыты термочувствительным поли(N-изопропилакриламид) полимером (PNIPAM).

Термочувствительный полимер PNIPAM продемонстрировал резкое изменение размера частиц (от 100 до 900 нм) в результате фазового перехода вблизи своей нижней критической температуры растворения (≈ 32 °C). Это обеспечивает контролируемый выброс лекарства при нагревании за счёт магнитной гипертермии. Полученные результаты демонстрируют данного создания материалов потенциал подхода ДЛЯ ДЛЯ магнитоуправляемой тераностики.

- [1] Z. Wang, Y. Sun, Y. Shen и др. Advanced NanoBiomed Research 4(3), 2300125 (2024).
- [2] T.R. Nizamov, A.A. Amirov, T.O. Kuznetsova и др. Nanomaterials 13(5), 811 (2023).
- [3] M. Abakumov, T. Nizamov, L. Yanchen и др. Mater. Lett. 276, 128210 (2020).

Закон Джоуля-Ленца для гиперболического уравнения теплопроводности в аморфном халькогенидном полупроводнике

Совтус Н.В., Мынбаев К.Д. ФТИ им.А.Ф, Иоффе, Санкт-Петербург, Россия e-mail: spnick93@mail.ru

Исследование динамики фазовых переходов В халькогенидных полупроводниках (например, Ge-Sb-Te) критически важно для разработки энергоэффективных переключающих устройств памяти поколения. Особый интерес представляет связь между локальным колебательными джоулевым нагревом, образованием шнура тока и гиперболическим процессами, описываемыми уравнением теплопроводности.

При подаче электрического напряжения на халькогенидный стеклоообразный полупроводник (ХСП) в последнем происходит эффект переключения – резкое уменьшение сопротивления в определённой области полупроводника. Решение параболического стационарного уравнения теплопроводности показывало, что данный эффект сопровождается неравномерным перераспределением плотности тока, что можно трактовать как образование токового шнура, при этом в более нагретой области полупроводника происходит кристаллический переход из аморфного состояния в кристаллическое. В [1] экспериментально наблюдались колебания тока во времени, протекающего через образец $Ge_2Sb_2Te_5$.

выполненном исследовании авторами решено теплопроводности гиперболического однородного типа ДЛЯ пространственного распределения температуры (шнур представлен в виде равномерно нагреваемого цилиндра). Размеры шнура тока имеют масштаб порядка 1 мкм, что позволяет прибегнуть к использованию второй производной от температуры по времени из-за малости размеров токового цилиндра по сравнению с моделью бесконечной сплошной среды, в которой нет резких перепадов физических характеристик системы. Гиперболическое уравнение теплопроводности имеет вид:

$$\rho c \tau_r \frac{\partial^2 T}{\partial t^2} + \rho c \frac{dT}{dt} = \sigma_0 F^2 exp \left(\frac{-\Delta E}{k_B T} + \frac{e^2 F^2}{3\hbar m} \left(\tau_1 + \frac{\hbar}{2k_B T} \right)^3 \right) - \lambda (T - T_0) \quad (1)$$

 au_r —время релаксации, λ — коэффициент теплоотвода, ΔE — энергия активации, au_1 —время туннелирования, F — электрическое поле, σ_0 — предельная проводимость при бесконечно высокой температуре.

Под временем туннелирования подразумевается квантовый параметр из модели адиабатического туннелирования на U⁻-центрах— определённом виде дефектов в кристаллической решётке, природа которых учитывает

взаимодействие электронов и фононов(два электрона могут образовать аналог куперовской пары в сверхпроводнике, из-за того, что их фононами более взаимодействие сильно, нежели отталкивание). В указанном уравнении величина прикладываемого напряжения составляла десятые доли и единицы вольт, толщина плёнки $L \sim 10^{-6}$ м, энергия активации— 0.1 - 0.3 эВ. Одной из целей исследования было получение зависимости температуры, тепловыделения и энтропии от времени. Для этого экспоненциальный множитель в (1) был разложен вблизи начальной температуры T_0 в ряд Тейлора с точностью до первой степени, после чего уравнение решалось как неоднородное линейное ДУ второй степени. Данное преобразование позволило вывести формулу для гипотетической температуры, совершающей колебания в полупроводнике. Однако для реального Ge-Sb-Te эти колебания не наблюдаются, так как необходим крайне высокий теплоотвод, пористая структура и время релаксации $\tau_r >> 10^{-9} {
m c}$. Решением дифференциального уравнения теплопроводности является следующая функция:

$$T(t) = T_0 + \frac{\sigma_0 F^2 f(T_0)}{\left(\lambda - \sigma_0 F^2 f'(T_0)\right)} \left(1 - e^{-\frac{t}{2\tau_r}} \left(\cos(\omega t) + \frac{1}{2\omega\tau_r} \sin(\omega t)\right)\right)$$

$$\omega = \sqrt{\frac{(\lambda - \sigma_0 F^2 f'(T_0))}{\rho c \tau_r} - \frac{1}{4\tau_r^2}} \qquad f(T_0) = \exp\left(\frac{-\Delta E}{k_B T_0} + \frac{e^2 F^2}{3\hbar m} (\tau_1 + \frac{\hbar}{2k_B T_0})^3\right)$$

$$f'(T_0) = f(T_0) \left(\frac{\Delta E}{k_B T_0^2} - \frac{e^2 F^2 (\tau_1 + \frac{\hbar}{2k_B T_0})^2}{2mk_B T_0^2}\right) - \text{коэффициенты}$$

разложения в ряд Тейлора.

На основании уравнения (2) с учётом формулы $S = \int \frac{\sigma(T)F^2V}{T} dt$ (V—объём системы) можно получить формулу для зависимости энтропии в шнуре тока от времени:

$$S(t) = \sigma_0 F^2 V[f'(T_0) \cdot t + \int_0^t \frac{f(T_0) - f'(T_0) T_0}{T(u)} du]$$
(3)

Характер возрастания энтропии близок к линейному, что делает его более стремительным по сравнению с энтропией, увеличивающейся в проводящем кристалле в простом случае с линейно возрастающей температурой. Рассчитанное через формулу (3) количество теплоты $Q = \int T dS$ позволяет оценить его в размере $10^{-10} Дж$ для кристаллического цилиндра объёмом $V{\sim}10^{-18} {\rm m}^3$. Термодинамические параметры зависят от времени туннелирования носителей заряда между дефектами решётки.

Итак, уравнение теплопроводности с учётом инерции теплопереноса приводит к наличию второй производной от температуры по времени и описывает перенос тепла в шнуре тока— кристаллическом образовании, сформировавшемся в аморфном полупроводнике в результате фазового перехода за предельно короткий (по сравнению со временным масштабом

нагрева) срок. Ток в шнуре имеет повышенную плотность по сравнению с другими участками полупроводника. Более подробно о величинах, характеризующих тепловыделение в шнуре и об описании теплопередачи через гиперболическое уравнение можно прочитать в работах [2],[3].

Данная работа может быть полезна при проектировании приборов, стойких к перегреву. При достаточно большом времени релаксации в полупроводниках могут проявиться паразитические эффекты, заключающиеся в неустойчивости температуры. Знание зависимости между выделением тепла и временем туннелирования позволит оценивать функциональность будущих приборов, работа которых основана на принципах квантовой механики.

У авторов нет конфликта интересов.

- [1] Фефелов, С. А., Казакова, Л. П., Богословский, Н. А., & Цэндин, К. Д., **ФТП**, *52*(12), 1503-1506. (2018)
- [2] Фефелов, С. А., Казакова, Л. П., Богословский, Н. А., Былев, А. Б., & Анненкова, А. М Известия Санкт-Петербургской лесотехнической академии, (238), 228-242. (2024)
- [2] Maillet D. International Journal of Thermal Sciences, 139, 424-432.(2019)

Теплопроводность YBCO в области сверхпроводящего состояния, определяемая инверсией знака ангармонизма

Мурлиева Ж.Х. ^{1,2}, Палчаев Д.К. ¹, Гаджимагомедов С.Х. ¹ Дагестанский государственный университет, Махачкала, Россия ²Дагестанский государственный университет народного хозяйства, Махачкала, Россия e-mail:zhariyat@mail.ru

До сих пор отсутствует понимание резкого возрастания теплопроводности (λ) сверхпроводников (СП) ниже температуры сверхпроводящего перехода «нормальных» электронов λ^e , фононов λ^{ph} и конвективный вклад λ^c , связанный с разрывом сверхпроводящих пар, хотя для классических СП он очень мал. Учитывая особенности структуры ВТСП, В.Л. Гинзбург [1] предположил возможность возрастание в них роли вклада λ^c , что может привести к необычному ходу λ (Т) [2]. Хотя там же [1] отмечалось, что это не «единственно возможное» объяснение, т.к. рост λ можно связать так же и с возрастанием фононного вклада λ^{ph} или λ^e .

Конечность теплопроводности связана с сопротивлением среды тепловых возбуждений, поэтому, обычно, распространению рассматривается ее теплосопротивление (W=1/λ). Поскольку в ВТСП, как и обобщенных зарядовых возбуждений, неметаллах, нет теплопроводность, в основном, определяется фононным вкладом W^{ph}. Мы интерпретации полагаем, что проблема отсутствия теплопроводности в том, что она решается без учета изменения объема при формировании теплосопротивления, т.е., без явного учета влияния ангармонизма колебаний атомов. Изменение ангармонизма, в свою очередь, характеризуется температурной зависимостью коэффициента теплового расширения α (КТР), изменяющегося на многие порядки от ~ 0К до плавления.

На основе анализа большого массива экспериментальных данных нами [3-5] установлено, что в каждом равновесном состоянии W(T) линейно связано с термической деформацией решетки:

$$W(T) - W^s = W^{ph} = W^* \alpha T, \tag{1}$$

 W^{s} вклад рассеяния на границах И дефектах, (предельное) характеристическое ДЛЯ каждого материала теплосопротивление. Из (1) следует, что при наличии инверсии знака КТР зависимость W(T) должна быть различна для области его положительных и отрицательных значений. Это имеет особое значение для ВТСП, как и для многих рыхлоупакованных структур, которым характерна инверсия знака α ниже и выше Т_с, а также непосредственно в точке перехода. В частности, после допирования YBCO кислородом происходит переход его структуры [6] от несверхпроводящей к сверхпроводящей, что сопровождается инверсией знака КТР — ангармонизма. Сравнение данных из [2] и [7], полученных для YBCO в направлении b элементарной ячейки (рис. 1) показывает аномальное снижение W(T) (возрастание λ (T)) сразу ниже T_c (\sim 90 K). Такое поведение W(T) коррелирует с отклонением от регулярности температурной зависимости коэффициента теплового расширения α (T).

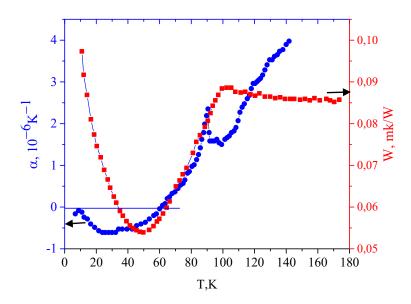


Рис. 1. Зависимости W(T) [2] и $\alpha(T)$ [7] в направлении \boldsymbol{b} для YBCO.

Минимум W(T) (максимум λ (T)) совпадает с максимальным отклонением КТР в область отрицательных значений (рис.1), когда упругость решетки возрастает, а ангармонизм колебаний практически стремится к нулю.

Работа выполнена в рамках Гос. задания FZNZ-2025-0003

- [1] В.Л. Гинзбург, УФН, **168**, № 3, 363 (1998).
- [2] J. L. Cohn, E. F. Skelton, S. A. Wolf et. al., Phys. Rev. B 45, № 22, 13144 (1992).
- [3] Д.К. Палчаев, А.Б. Бадталов, Ж.Х. Мурлиева и др., ФТТ, **43**, № 3, 442 (2001).
- [4] Ж.Х. Мурлиева, К.К. Казбеков, Д.К. Палчаев Маангалов М.М., ФТТ, **45**, №.12, 2173 (2003).
- [5] Д.К. Палчаев, Ж.Х. Мурлиева, Ф.Д. Палчаева, ТВТ, 48, № 4, 512 (2010).
- [6] R. J. Cava, A. W. Hewat, E. A. Hewat, et. al., Physica C 165 419 (1990).
- [7] C. Meingast, V. Pasler, P. Nagel, et. al., Physical Review Letters, **86**, № 8, 1606 (2001).

Формирование зарядовых возбуждений и их релаксация в металлах, в том числе, претерпевающих фазовые переходы

<u>Палчаев Д.К.</u>, Мурлиева Ж.Х., Рабаданов М.Х., Ихаков М.Э., Гажимагомедов С.Х., Эмиров Р.М.

Дагестанский Государственный Университет, Махачкала, Россия e-mail: dairpalchaev@mail.ru

Предметом настоящего исследования являются механизмы формирования элементарных зарядовых возбуждений и их релаксации в металлических проводниках. В их числе: классические металлы, никель и бета латунь, претерпевающие фазовый переход II рода, а так же сверхструктурные интерметаллиды, которым характерны диффузионные фазовые переходы. Последние проявляют одновременно металлический и полупроводниковый характеры проводимости. Актуальность решения этой задачи связана с необходимостью понимания природы проводимости не только классических металлов, но и ВТСП, «странных металлов» и металлов с насыщением сопротивления. Эти вопросы в настоящее время являются центральными при получении инновационных функциональных материалов.

Проблема отсутствия возможности количественной интерпретации температурной зависимости электросопротивления даже для классических металлов связана с пренебрежением особенностями формирования деформационного потенциала решетки. Характер изменения термической деформации решетки, связанный с эффектом ангармонизма колебаний атомов, теорией (ввиду его малости) учитывается лишь поправкой в виде константы Грюнайзена, одинаковой для всех мод. Однако, согласно Дж. Займану [1]: «...весь кристалл расширяется (или сжимается) до тех пор, пока не будет объем, при котором полная свободная энергия минимальна». Заметим, это происходит при установлении каждого равновесного состояния, где атом ведет себя как нежесткий аттрактор, совершающий ангармонические колебания, до накопления энергии, необходимой для перехода в новое равновесное состояние. Непосредственно в процессе перехода атом представляет собой ротатор, поскольку разрешенные состояния квантованы. В этой связи при интерпретации экспериментальных данных следует учитывать не только ангармонизм равновесного состояния, но и изменение параметра ангармонизма, обеспечивающее переход системы в новое равновесное состояние. При этом отметим, что с температурой абсолютные значения электросопротивления и термической деформации, определяемой ангармонизмом, изменяются сложным образом и на много порядков.

Мотивацией к решению такой задачи явилась обнаруженная [2-7] на основе экспериментальных данных, близкая к функциональной, связь между электросопротивлением и произведением коэффициента теплового расширения $\beta(T)$ на температуру T:

$$\rho(T) = \rho_0 + \rho^* \beta(T) T. \tag{1}$$

Здесь ρ_0 – электросопротивление при T=0К, ρ^* – характеристическое электросопротивление, т.е. предельное значение для каждого металла или фазы; $\beta(T) = \mathrm{d}V/V\mathrm{d}T$ – относительная термическая деформация. Из (1) следует, что для любой температуры от 0К до температуры плавления T_m :

$$\frac{\rho_1}{\beta_1 T_1} = \frac{\rho_2}{\beta_2 T_2} = \dots = \frac{\rho_i}{\beta_i T_i} = \frac{\rho_D}{\beta_D T_D} = \frac{\rho_m}{\beta_m T_m} = \rho^* = \text{const},$$
 (2)

т.е. сопротивление есть функция температуры и объема:

$$\rho(T, V) = \rho * \beta(T)T. \tag{3}$$

Из (2) и (3) следует подобие температурных зависимостей атермического сопротивления $\rho(T)/T$ (рис.1) и $\beta(T)$. На вкладке рисунка 1 показано, что температурная зависимость атермического сопротивления $\rho(T)/T$ подобна температурным зависимостям теплового расширения $\beta(T)$ и теплоемкости c(T).

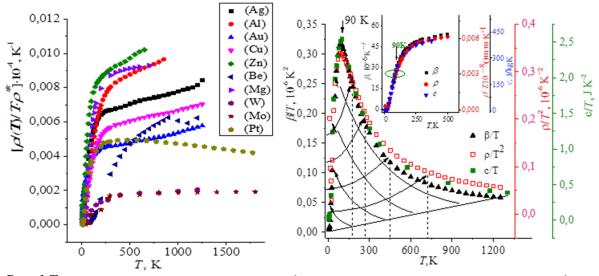


Рис. 1 Температурные зависимости приведенного атермического сопротивления для металлов — (слева); связь между атермическим сопротивлением, КТР и теплоемкостью, деленными на текущую температуру: c(T)/T, $\beta(T)/T$ и $\rho(T)/T^2$ на примере меди — (справа).

Очевидно, что температура, при которой кривая выходит на экстремаль, для меди является характеристической (T^*). Принимая во внимание, что c(T)/T=dS/dT, эти зависимости следует рассматривать как геометрическое место точек выхода энтропии на экстремаль для каждого равновесного состояния со значениями T_i и V_i при P= const. Более того, она демонстрирует обратимость в квазистатическом процессе, поэтому изменение энтропии на кривой является функцией состояния:

$$dS = (\partial S/\partial T)_V dT + (\partial S/\partial V)_T dV \tag{4}$$

Первое слагаемое в (4) отражает рост энтропии термического возбуждения электронной и атомной подсистем. Второе – производство энтропии системой для вывода ее на экстремаль, в результате совершения работы по изменению объема при переходе в соответствующее равновесное состояние. Представим (4) в виде:

$$\frac{TdS}{dT} = \left(\frac{T\partial S}{\partial T}\right)_{V} + \left(\frac{\partial S}{\partial \tau} \frac{\partial \tau}{\partial V}\right)_{T} \left(\frac{dV}{VdT}\right)_{P} TV, \tag{5}$$

где τ - время релаксации зарядового возбуждения в формуле Максвелла для электросопротивления. Выражение (5) позволяет понять наблюдаемую связь свойств.

Следует обратить внимание на совпадение температуры точки перегиба для всех свойств Сu, где производная энтропии по температуре явно изменяет знак, как бы разделяя зависимости этих свойств на области низких и высоких температур. До сих пор такой границей считалась температура Дебая, не отражающая какого-либо физического смысла и различная для этих свойств. Зависимости, приведенные на рисунке 1 (справа), получены более пятнадцати металлов по экспериментальным данным соответствующих свойств из области температур от 0К до температуры плавления.

Согласно выражению для электросопротивления в концепции Максвелла ($\rho(T) = \tau(T)/\epsilon_0$), скорость производства энтропии ($\partial S/\partial \tau$) системой (в первом множителе (5) справа), обеспечивающая ее переход к новому равновесному состоянию, зависит от времени релаксации зарядов. Это время, определяется относительным изменением объема (см. (5)) при переходе из одного равновесного состояния в другое. Выражение (5) можно представить в виде закона Майера для конденсированной среды:

$$C_P(T) - C_V(T) = \left(\frac{\partial S}{\partial \tau} \frac{\partial \tau V}{\partial V}\right)_T \cdot \beta(T)T \tag{6}$$

Выражение (6) позволяет не только понять наблюдаемую связь свойств, но и является универсальной зависимостью термо- и электродинамики для классических металлов. Переход из равновесного состояния системы атомов в новое происходит в аттракторо-ротационном, квантово-электродинамическом процессе. В выражении первого начала (6) для системы поляризованных атомов с «металлической» связью, в отличие от газа нейтральных частиц, квантово-электродинамический процессе представляется некоторым множителем к работе, совершаем системой. Этот множитель содержит время «растекания» возбужденного заряда, которое, согласно (3) пропорционально относительному изменению объема системы.

В отличие от классических металлов, в ВТСП имеются лишь зарядовые возбуждения. Интерметаллиды, как и ВТСП [7], демонстрируют насыщение удельного сопротивления и смену знака температурного коэффициента сопротивления. Для таких проводников, в которых при деформации решетки заряды не только релаксируют, но и возбуждаются, корреляция наблюдается между температурными коэффициентами сопротивления $d\rho(T)/\rho(T)dT$ и термической деформацией $\beta(T)$. Такую корреляцию можно объяснить на основе модифицированной формулы Максвелла,

$$\rho_M(T) = \frac{n_0 \tau(T)_M}{n(T)\varepsilon_o} \tag{7}$$

где n_0 – концентрация, характерная для металлов. При $n(T) = n_0$ выражение (7) переходит в обычную формулу для классических проводников. Логарифмируя выражение (7), а затем, дифференцируя его по температуре, имеем:

$$d\rho(T)/\rho(T)dT = -dn(T)/n(T)dT + d\tau(T)/\tau(T)dT$$
 (8)

где dn(T)/n(T)dT = -dV(T)/V(T)dT - изменение концентрации зарядов, определяемое знаком деформации решетки. Правая часть (8) характеризует вклады от относительных изменений концентрации зарядовых возбуждений и их релаксации соответственно. В зависимости от типа превалирующего вклада, неметаллические проводники могут проявлять как металлический, так и полупроводниковый характеры проводимости. Отсутствие параметра длины свободного пробега в (7), позволяет избежать также проблему предела Иоффе-Регеля.

Работа выполнена при поддержке ГЗ FZNZ-2025-0003

- [1] J.M. Ziman, Principles of the theory of solids, Cambridge at the University Press, (1973).
- [2] Ж.Х. Мурлиева, Д.К. Палчаев, Е.Д. Борзов, Письма в ЖТФ, **28**, №18, 48 (2002).
- [3] Д.К. Палчаев, Ж.Х. Мурлиева, К.К. Казбеков, ТВТ, 45, № 5, 700 (2007).
- [4] Ж.Х. Мурлиева, Д.К. Палчаев, К.К. Казбеков, М.Э. Исхаков, Письма в ЖТФ, **32**, №16, 28 (2006).
- [5] Zh. Kh. Murlieva, M.E. Iskhakov, D.K. Palchaev et al., High Temperature, 50, № 5, 602 (2012).
- [6] D.K. Palchaev, Zh.Kh. Murlieva, I.M. Abdulagatov, et al., High Temperature, **55**, № 3, 386 (2017).
- [7] D.K. Palchaev, Zh. Kh. Murlieva, M.Kh. Rabadanov, et al., Journal of Physics: Conference Series. IOP Publishing, **1686**, № 1, 012051 (2020).

Комнатно-температурный дипольный ферромагнетизм в гетерогенных сплавах

<u>Абдулвагидов Ш.Б.</u>¹, Абдулвагидов Б.Ш.¹, Сайпулаева Л.А.¹, Маренкин С.Ф.², Риль А.И.², Мельникова Н.В.³

¹ Институт физики ДФИЦ РАН, Махачкала, Российская Федерация e-mail: shbabdulvagidov@mail.ru

² Институт общей и неорганической химии РАН им. Курнакова, Москва, Российская Федерация

³ Уральский федеральный университет, институт естественных наук и математики, Екатеринбург, Российская Федерация

Ферромагнетизм обусловлен кулоновским взаимодействием зависящим взаимной ориентации квантовой природы, OT заряженных частиц. В большинстве случаев энергия взаимодействующих атомов уменьшается, когда их магнитные моменты антипараллельны, и только в редких случаях соседние атомы упорядочиваются ферромагнитно. Так, только восемь химических элементов являются ферромагнетиками: 3 переходных металла Fe, Co, Ni и 5 редких земель Gd, Tb, Dy, Ho, Er. Температуры Кюри Fe, Co, Ni выше комнатной температуры, но даже для редкоземельных ферромагнетиков с T_C между 20 K и комнатной температурой дипольные точки Кюри, рассчитанные из классического магнитного взаимодействия, на 1 - 2 порядка ниже. Обычно в веществе атомы с магнитными моментами около $1\mu_B$ находятся на расстояниях $r\approx 2$ Å, которой соответствует точка Кюри 1-4 К. Таким образом, ничего не остается, как искать комнатно-температурный дипольный ферромагнетизм в кластерных и мезоскопических гетерогенных системах. Дипольный ферромагнетизм при комнатной температуре был обнаружен в линейных самоорганизующихся мезоскопических массивах частиц приготовленных методом осаждения из электронно-лучевого испарителя [1] в высоком вакууме. Коэрцитивная сила линейных самособирающихся двумерных массивов сильно зависит от диаметра ферромагнитных частиц и расстояния между ними. Кроме того, высокая стоимость двумерной дипольной системы, получаемой путем комбинирования масочной техники со стандартной молекулярно-лучевой эпитаксией, представляет собой серьезное препятствие для ее практического применения. До сих пор не было сообщений об использовании таких систем в каких-либо устройствах. Другой недостаток заключается в том, что тонкопленочные нанодиски железа создают настолько слабое магнитное поле, что магниторезистивный метод не в состоянии определить их магнитное состояние, поэтому приходится использовать поверхностный магнитооптический эффект Керра [2]. Дипольная энергия пропорциональна объему глобулы, а тепловая энергия остается такой же, как и у одного атома. В результате более массивные глобулы, подобно броуновским частицам, менее восприимчивы к тепловому возбуждению, и при определенном объеме глобулы дипольная точка Кюри превысит комнатную температуру. Слабая коэрцитивная сила и малая энергия размагничивания делают дипольные ферромагниты привлекательными для использования в спинтронике. К сожалению, их дипольные точки Кюри лежат в пределах температур жидкого гелия, поскольку энергия диполя чрезвычайно мала на межатомных расстояниях >1 Å. Впервые обнаружено, что гетерогенный сплав Cd₃As₂(MnAs)_{0.447} является комнатно-температурным дипольным ферромагнетиком.

Сплав $Cd_3As_2(MnAs)_{0.447}$ выплавляли из отдельных элементов в графитированной вакуумированной ампуле в автоматической электрорезистивной печи с точностью 1° .

Микроструктура образца, исследованная с помощью сканирующего электронного микроскопа CarlZeissMerlin, демонстрирует почти регулярное расположение кластеров MnAs характерного диаметра около 40 нм внутри матрицы Cd_3As_2 , а рентгеновская дифракция подтверждает вухкомпонентный состав эвтектики.

Проведенные из первых принципов расчеты магнитных свойств обнаружили следующие универсальные глобулярных ферромагнитных сплавов, открывающие перспективы их использования в спинтронике. Глобулярный сплав Cd₃As₂(MnAs)_{0.447} ферромагнетиком, комнатно-температурным дипольным котором коэрцитивная сила не зависит ни диаметра кластера и ни межкластерного расстояния. При этом его точка Кюри кубически зависит от диаметра кластеров, что наряду с инвариантностью H_c , открывает возможность создания прецизионного микроминиатюрного магнитного термометра. В докладе будут обсуждаться эти и многие другие результаты, при исследовании структурных, морфологических выявившиеся магнитных свойств эвтектоидных ферромагнитных гетерогенных сплавов $Cd_3As_2(MnAs)_x$. Здесь же заслуживает упоминания то, что не методы сканирующей силовой электронной микроскопии и рентгеновской дифракции, а, именно, проведенные нами расчеты доказали, ферромагнитные вкрапления в Cd₃As₂ представляют собой MnAs и что соотношение между диаметрами глобул и расстояниями между ними определяются содержанием ферромагнитной компоненты эвтектики. Отметим также, что выявлены новые реализации мезоскопических магнитных порядков и новый вид магнитоструктурный переход.

- [1] A. Sugawara, M.R. Scheinfein, Room-temperature dipole ferromagnetism in linear-self-assembling mesoscopic Fe particle arrays, Phys. Rev. B **56**, R8499-R8501 (1997).
- [2] Z.J. Yang, M.R. Scheinfein, Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism, J. Appl. Phys. **74**, 6810-6823 (1993).

Фазовые переходы, двухфазная изохорная теплоёмкость и другие теоретически значимые физические параметры метилдодеканоата

Абдулагатов И.М. 1,2 , Батырова Р.Г. 1 , <u>Ибавов Н.В.</u> 1 , Расулов С.М. 1 , Назаревич Д.А. 1

¹ Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: nabi79@mail.ru
² Дагестанский государственный университет, Махачкала, Россия e-mail: ilmutdina@gmail.com

Экспериментальное исследование двухфазной изохорной теплоемкости (C_{v_2}) $_{VT}$, параметров фазового перехода жидкость-газ (T_s , ρ_s), давления пара (P_s , T_s), и термического коэффициента давления (dP_s/dT) метилдодеканоата, как одного из ключевых компонентов биотоплива, были проведены нами вдоль девяти жидкостных изохор в диапазоне плотностей ($180.90 \le \rho \le 845.31$) кг/м³ и трех околокритических жидкостных и паровых изохор (180.90, 234.52 и 374.11) кг/м³. Диапазон исследуемых температур, для каждой измеренной изохоры, охватывал температуру фазового перехода жидкость-пар $T_s(\rho)$, до 450 К (температуры, близкой к термическому разложению).

Измерения были проведены с использованием методики высокотемпературного адиабатического калориметра постоянного объема, ранее использовавшегося для измерений C_VVT -соотношений компонентов биотоплива в двух- и однофазной области [1,2].

Общая расширенная неопределенность измерений плотности (ρ), температуры (T) и изохорной теплоемкости (C_{v_2}) при 95% доверительном интервале с коэффициентом k=2 оценивается в 0.15 %, 15 мК и 2 % соответственно.

Для каждой экспериментальной изохоры измерения начинали из двухфазной области в сторону увеличения температуры. Большинство измерений было сосредоточено в непосредственной близости от температур фазового перехода жидкость-газ ($T_{\rm s}$) для точного определения свойств фазовой границы ($\rho_{\rm s}$, $T_{\rm s}$, $C_{\rm v_1}$, $C_{\rm v_2}$).

В качестве критерия определения температуры фазового перехода жидкость-газ $T_s(\rho)$ использовалась точка разрыва на температурной зависимости изохорной теплоемкости $C_v(T)$ (температура скачка или скачкообразного поведения C_v).

Для девяти жидкостных изохор, в диапазоне плотностей ($180.90 \le \rho \le 845.31$) кг/м³, температуры фазового перехода (T_s) были определены экспериментально. Для двух паровых изохор (180.90, 234.52) кг/м³ и одной жидкостной околокритической изохоры (374.11) кг/м³, для которых температуры перехода очень высоки (выше температуры термического

разложения, 473 К), мы не доходили до температур фазового перехода ($T_{\rm s}$), т.к. для этих изохор термическое разложение метилдодеканоата происходит до достижения температуры фазового перехода ($T_{\rm s}$ > 673 K).

Измеренные двухфазные изохорные теплоемкости ($C_{\rm V2}$) как функции удельного объема (V) вдоль различных изотерм (ниже 473 K) были использованы для точной оценки значений вторых температурных производных химического потенциала $\frac{{\rm d}^2 \mu}{{\rm d}T^2}$, и давления пара $\frac{{\rm d}^2 P_{\rm S}}{{\rm d}T^2}$, на основе теоретического Yang-Yang соотношения [3]. Используя значения вторых температурных производных, были оценены вклады давления пара $C_{\rm VP} = VT \frac{{\rm d}^2 P_{\rm S}}{{\rm d}T^2}$ и химического потенциала $C_{\rm V\mu} = -T \frac{{\rm d}^2 \mu}{{\rm d}T^2}$, в измеренную общую двухфазную теплоемкость ($C_{\rm V2}$) VT метилдодеканоата.

Измеренные значения C_{V2} , ρ_S и T_S были использованы для определения некоторых ключевых термодинамических свойств метилдодеканоата вдоль кривой насыщения, а также для определения данных о критических свойствах.

- [1] Abdulagatov I. M. et al. Isochoric heat capacity, phase transition and derived key thermodynamic properties of methyl decanoate //Fuel. 2022. T. 310. C. 122251.
- [2] Abdulagatov I. M., Batyrova R. G., Polikhronidi N. G. Simultaneously measurements of vapor-pressure, saturated liquid density, single-phase PVT properties, and thermal-pressure coefficient of methyl decanoate at high-temperatures and high-pressures //Fluid Phase Equilibria. 2022. T. 560. C. 113506.
- [3] C.N. Yang, C.P. Yang, Phys. Rev. Lett. (1969) https://doi.org/10.1103/PhysRevLett.13.303

Фазовый переход в крови человека: гамма-резонансный анализ

Гусейнов М.М.

Институт физик им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия e-mai: gusmagm@yandex.ru

Введение. Среди разных видов фазовых переходов (ФП) отдельно можно выделить переходы в биологических системах (БС), в которых наблюдается особое их многообразие, обусловленное как чрезвычайной сложностью самих БС, так и разнообразием происходящих в них биохимических процессов [1]. Наиболее известный пример фазового перехода в БС – свертывание белков крови. Известные теории и гипотезы о природе свёртывания крови разнятся в описании природы явления – внутри кровеносного русла (образование тромбов), в очаге его механического повреждения и инфекционно-септического процесса. Поэтому можно предположить, что и биохимическая природа свёртывания крови от разных причин, скорее всего, имеет разную природу, как различны и их последствия: в первом случае свертывание крови спасает жизнь, во втором – убивает её. Как известно, кровь представляет собой жидкую и подвижную соединительную ткань внутренней среды организма, состоит из жидкой плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов, циркулирует по замкнутой системе сосудов под действием силы сокращения сердца и. Кровь, как и другие ткани организма подвержена воздействию внешних факторов, в результате чего могут измениться её свойства. Одним из существенных факторов, влияющих на биохимическое состояние крови считается тепловой стресс – высокие (выше 37 °C) и низкие (ниже 35 °C) температуры. При этом, наибольший интерес для изучения представляет область температур 39-43 °C, где и начинается борьба организма за выживание. Многие исследования крови её реологических, механических и электрических посвящены изучению свойств. Между тем, в основе всех изменений состояний БС процессы, биохимические без которых трудно знания ПОНЯТЬ микроскопический механизм не только свёртывания крови, но и гибели проникших в организм паразитов при температурах 39-42 °C.

В данной работе, с целью разобраться с биохимией крови при различных температурах, мы решили исследовать поведение зависящих от температуры параметров гамма-резонансных спектров ядер ⁵⁷Fe. Для исследования были выбраны образцы крови 7 лиц разного возраста, пола и состояния здоровья. Это позволило выявить зависимость параметров спектров от состояния здоровья тоже. При этом сам вид болезни (в данном случае лейкемия) не имеет принципиального значения — лица могли болеть любыми другими болезнями, но мы имели образцы крови лиц с лейкемией.

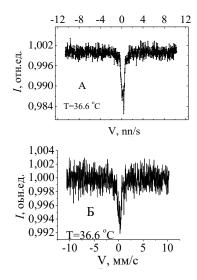


Рис1 Спектры ядер ⁵⁷Fe в Крови заведомо здорового мужчины, 68 лет (А) и мужчины, 24 года (Б)

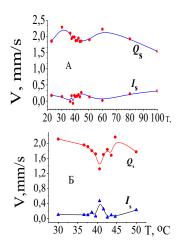


Рис.2. Температурные зависимости Is и Qs спектров ядер 57 Fe в крови заведомо здорового мужчины, 68 лет (A) и больного лейкемией мужчины, 24 года (Б)

Образцы для исследования представляли собой мелкодисперсные порошки высушенной на комнатной температуре цельной воздухе при крови лиц разного пола, возраста и состояния здоровья. Измерения проводилась на экспрессном спектрометре МС-1104Ем в сжатой геометрии пропускания диапазоне допплеровских скоростей ± 10 мм/с в интервале температур от 25 до 100 °C. Источник γ -излучения – 57 Co(Cr) с активностью 1.14 ГБк. Расшифровка ядерных спектров производилась с помощью программы UnivemMS. Температура образцов поддерживалась автоматически с точностью до ±0.1 °C.

Эксперимент и результаты. В состав практически всех тканей организма человека железа, которые входят атомы играют существенную нормальном роль В его функционировании. В разных химических реакциях железо теряет или приобретает электронный заряд, в результате в области ядра ⁵⁷Fe изменяется электронная плотность, что приводит к изменению энергетического спектра ядра ⁵⁷Fe и это фиксируется гамма-резонансном Наиболее информативными параметрами состоянии атома в ядерной гамма-резонансной спектроскопии (ЯГРС) являются изомерный химический сдвиг $I_{\rm s}$ и квадрупольное расщепление спектра $Q_{\rm s}$ Они непосредственно связаны с физико-химическими процессами в исследуемом объекте. Сдвиг I_s , определяется как разность электронных плотностей на ядрах эталонного источника излучения $|\psi_{\sigma}(0)|^2$ и поглотителя-объекте

исследования $|\psi_e(0)|^2$. Знак I_s зависит также от разности среднеквадратичных радиусов ядер в возбужденном R_e и основном R_g состояниях. Для ядер ⁵⁷Fe $R_e - R_g < 0$. Поэтому увеличение плотности s-электронов на ядре ⁵⁷Fe в поглотителе ведёт к уменьшению изомерного сдвига. Квадрупольное расщепление спектра Q_s связано с взаимодействием квадрупольного момента ядра с градиентом электрического поля на ядре, создаваемого электронами собственного атома и атомами первой

координационной сферы. Оба параметра зависят от электронной конфигурации и стереохимических свойств окружения ядра.

На рисунке 1 приведены гамма-резонансные спектры ядер ⁵⁷Fe в крови заведомо здорового мужчины, 68 лет (А) и больного лейкемией мужчины, 24 года (Б). Структура спектров их крови, расшифрованная программой UnivemMS, отличается по числу компонентов, параметрам и интенсивностям. На рисунке 2 приведены зависимости $I_s(T)$ и $Q_s(T)$ спектров ядер ⁵⁷ Fe в крови двух из 7 лиц, 6 из которых болели лейкемией.. $\delta_{\rm I}({\rm T})$ и $Q_{\rm s}({\rm T})$ в интервале 37-43 °C претерпевают аномалии, связанные с происходящими в крови биохимическими процессами. 100 °C, для крови всех лиц интервала вплоть ДО наблюдается незначительные количественные и качественные различия, но интервал температурных аномалий для всех образцов крови остаётся в пределах 37-43 °C.

Таблица. Параметры экспериментальных спектров

Пациент и	-	Параметры ОS MM/C 1 MM/C 2 ²				
его возраст	Qs, mm/c	Is, MM/C	S, %	G, мм/с	χ^2	
Мужчина,	2.097	-0,0137	7.87	0.1746	1.013	
68						
Мужчина,	1,7220	0,7104	4.79	0.1746	0.992	
24						

Обсуждение результатов. Спектр ⁵⁷ Fe в крови здорового мужчины (Ртс.1.А), отличается значительной интенсивностью относительно спектра в крови больного лейкозом (Рис.1.Б), что говорит о более богатой железом (Fe^{2+}) крови здорового пациента. Этот показатель имеет непосредственное отношение к уровню гемоглобина, в котором сосредоточено почти всё железо. Интенсивности спектров крови лиц больных лейкозом отличаются не только от спектров крови здорового (10.26 %), но имеют различие и между собой. К примеру, для женщины, 83 года и мужчины, 24 года, они равны 7.87 и 4.79 %, соответственно. Такие же различия наблюдаются и для остальных больных лейкемией лиц. Эти факты, хотя и единичные, но указывают на связь уровня гемоглобина человека не только с качеством питания, но и состоянием его здоровья. Изомерный сдвиг спектра крови здорового пациента достигает максимума при 36 градусах, затем он падает, достигая минимума при 42 °C, затем достигнув второго максимума при 60 °С, плавно падает до минимального значения при 100 °С. Такое поведение соответствует значительному окислению железа в химической реакции с более и менее электроотрицательными соседями. Например в реакциях $2Fe+3F_2 \rightarrow 2FeF_{3+0}$ или $2Fe+3Cl_2 = 2FeCl_3 + Q$, железо Fe^{3+} . ДО C дальнейшим температуры окисляется ростом восстанавливает свой электронный заряд В реакции менее электроотрицательными соседями, а затем опять теряет его, а после 60 °C вплоть до 100 градусов восстанавливается до Fe^{2+} — $3d^6$. Квадрупольное расщепление, ведёт себя зеркально наоборот, достигая минимума при 40 °C,

максимума при 43 °C, затем падает достигая второго минимума при 60 °C и плавно растёт до максимума при 100 °C., что соответствует изменению градиента электрического поля и симметрии ближайшего окружения железа с изменением температуры.

По общепризнанному мнению врачей, любой воспалительный процесс или проникновение чужеродного объекта сопровождается повышением температуры организма, которое, якобы, и приводит как свертыванию крови, так и гибели паразитов. Считается также, что повышение температуры связано с запускаемой гипоталамусом активацией антиоксидантной системы, основными компонентом которой является температура.

Однако, известно, что все микроорганизмы гарантированно погибают только при 165-170 градусах и выше, в связи с чем возникает сомнение — является ли причиной гибели паразитов в организме сама температура, или имеется другая причина? Иначе получается, что одни и те же паразиты в организме человека погибают при значительно низких (39-42 °C) температурах, чем в их свободном (вне организма) состоянии (160 °C). Почему? Для ответа на этот вопрос придётся допустить, например, что при температурах 39 °C и выше паразиты в организме погибают не в результате теплового удара, а вследствие атаки лейкоцитов, витаминов, микроэлементов и ферментов через экзотермические химические реакции с участием железа и других элементов, которых много в крови. Суть этой «атаки» на паразитов и состоит в химических реакциях, а ферменты, как известно, способствуют превращению одних веществ в другие, играют в живых организмах роль катализаторов многих биохимических реакций.

В данном случае можно предположить, например, что, входящие в состав крови и клеток организма C, O, H, S, N, P, K, Na, Ca, Mg, Cl, Fe и другие элементы в условиях температур 39-42 °C более активно вступают в экзотермические окислительно-восстановительные реакции так и с элементами белков, в результате чего элементами паразитов, паразиты погибают, белки крови денатурируются, свёртываются, температура при этом играет роль катализатора реакций. Таким образом, разница в 2-3 градуса разделяет белки на две термодинамические фазы клеток крови – живые до 39-40 °C и денатурированные до первичной структуры, после 41 °C. Возможно всё происходит совершенно по-другому, но факт в том, что в интервале температур 39-43 °C в крови фазовый переход 1 рода – изменяется агрегатное состояние – кровь живой жидкой фазы переходит в мёртвую жидкокристаллическую фазу.

[1] Ковалев О. В., Вечернин В.В., Письмак Ю.М.//Фазовые переходы в биологических системах и эволюция биоразнообразия//Монография / Под ред. О.В. Ковалева, С. Г. Жилина.СПб. Изд-во ПИЯФ РАН. 2007 . 196 с.

PVT свойства и фазовое равновесие Этилциклогексана

Абдулагатов И.М., <u>Расулов С.М.</u>, Исаев И.А., Оракова С.М. Институт физики им. Х.И. Амирханова Дагестанского федерального исследовательского центра РАН e-mail:suleimanr1@rambler.ru

При разработке моделей проектирования технологических процессов, энергоэффективности, при оценке возможных воздействий на окружающую среду, для транспортировки и хранения топлива необходимо знание теплофизических и термодинамических свойств.

Проведено исследование PVT- свойств Этилциклогексана. Измерения проведены на пьезометре постоянного объема [1] по 7 изохорам в температурной области 290 – 476 К, давлениях до 17 МПа. и пределах плотности 656,7 - 750,67 кг/м³. Ранее пьезометр использовался для измерения PVTх свойств чистого 1-бутанола, и бинарных смесей H₂O+н- C_5H_{12} и $H_2O+H-C_6H_{14}$ в широком интервале температур и давлений, включающих критические и сверхкритические области [2-7]. Пьезометр постоянного объема представляет собой трубка из нержавеющей стали 12Х18Н10Т с внутренним диаметром 8.721 мм, длиной 394 мм, толщиной стенки 2,7 мм. На одном торце трубки установлен датчик давления СДВ-А-16,00-4-20мА-0322С-0605-2-код с погрешностью измерения $\pm 0,15\%$, на другом запорный вентиль, который служит для откачки и заполнения пьезометра. Для выравнивания температуры вдоль пьезометра на трубку надет массивный медный блок посредством горячей прессовки. На торцах и в средней части медного блока просверлены отверстия для размещения контрольных и измерительных термопар и термосопротивления ПТС-10. осуществляется трехсекционной печью высотой 500 Температура регулировалась автоматически c помощью трех терморегуляторов ВРТ-3: один терморегулятор поддерживает общую температуру системы с погрешностью 0.01 К, два других контролируют нулевой градиент вдоль трубки. Погрешность измерения температуры составляет ± 0.014 К. Падающий груз также изготовлен из нержавеющей стали 12Х18Н10Т и имеет форму цилиндра с конусными концами. В центре груза установлен постоянный магнит, который удерживает груз в верхнем положении благодаря включенному электромагниту. При отключении электромагнита груз свободно падает вниз, перемешивая исследуемую жидкость. Поворот системы на 180° возвращает груз в исходное положение.

Давление в объеме пьезометра регистрируется и измеряется датчиком давления с точностью \pm 0.15%. Объем пьезометра, определяемый калибровкой по воде, составлял 24.410 ± 0.025 см³ при температуре $\sim 20^{\circ}$ С. Для учета изменения объема пьезометра в зависимости от температуры и давления вносились поправки. Вся система устанавливалась на полуосях и

могла свободно поворачиваться на 180°. Для компенсации теплоотвода по них нагреватель, мощность полуосям на наматывался которого регулировалась в зависимости от показаний дифференциальной термопары. Заполнение пьезометра проводилось под вакуумом через вентиль на торце пьезометра. Запорный вентиль имел два автономных выхода для получения в пьезометре вакуума и заправки его жидкостью в виде капилляров из нержавеющей стали. Вакуумный выход соединялся с насосом, а капилляр для заправки, снабженный пробкой, опускался в пикнометр с исследуемой жидкостью. Изначально выход для заправки был закрыт и система откачивалась вакуумным насосом. Далее вакуумный выход закрывался и открывался выход для заправки. При этом раствор полностью перетекал из пикнометра в пьезометр.

Экспериментальные данные Этилциклогексана представлены в Таблицах 1-3.

Таблица 1. РоТ данные Этилциклогексана

ρ=656,	7 кг/м ³	ρ=673,7 кг/м ³		ρ=691,	2 κΓ/m ³	ρ=712,1 кг/м ³		
T,K	Р,кПа	T,K	Р,кПа	T,K	Р,кПа	Т,К	Р,кПа	
290,26	1,05	293,26	1,31	294,30	1,39	293,78	1,35	
309,12	3,27	310,98	3,49	309,82	3,36	307,59	3,07	
323,55	5,82	323,69	5,81	324,29	5,95	322,15	4,55	
336,12	10,34	337,50	10,86	338,36	11,33	335,29	10,15	
352,12	19,11	353,25	19,97	352,09	17,93	349,31	12,15	
364,35	30,14	367,41	33,10	364,82	30,54	363,01	27,62	
378,01	46,93	379,26	48,52	379,12	48,13	376,67	45,03	
391,61	71,11	393,41	74,31	391,55	71,05	389,16	65,90	
405,18	104,2	405,12	103,3	405,92	106,6	393,70	75,11	
418,05	143,2	408,75	114,1	417,27	141	398,77	87,32	
429,95	200,7	412,37	124,5	419,01	147	401,15	95,02	
442,32	267,0	418,55	145,2	421,73	156	401,95	97,04	
447,06	298,1	420,00	150,1	422,42	159	402,28	254	
453,20	338	422,50	160,0	423,05	161	402,94	565	
456,97	364	428,00	186,2	423,92	165	404,04	1082	
458,82	381	433,25	215,2	424,53	168	404,38	1240	
460,20	391	437,37	237,3	424,80	170	404,77	1424	
461,45	402	442,12	267	425,46	301	405,17	1615	
466,45	444	448,50	324	426,03	546	405,58	1810	
467,53	454	455,12	1379	426,67	820	405,92	1967	
469,32	469	457,62	2275	427,42	1142	406,31	2151	
471,07	983	460,62	3992	427,93	1357	407,09	2517	
472,20	1260	465,10	5497	430,55	2485	408,21	3049	
473,20	1530	468,46	6710	431,46	2876	408,82	3336	
474,07	1733	473,12	8837	432,33	3289	412,05	4847	
474,83	2057			434,55	4201	415,06	6272	
475,82	2493			440,30	6669	419,11	8184	
477,07	2888			445,17	8590	423,00	10018	
				458,67	14568	428,67	12687	
				464,93	17225	432,14	14322	
						436,05	16164	

Продолжение

ρ=719,	9 кг/м ³	ρ=729,	9 кг/м ³	P=750,67 кг/м ³		
T,K	Р,кПа	T,K	Р,кПа	T,K	Р,кПа	
293,01	1,28	393,01	1,29	293,41	1,31	
311,32	3,64	310,31	3,37	309,26	3,27	
326,46	6,61	324,21	5,91	323,69	5,85	
340,21	12,25	337,20	10,84	336,51	10,58	
353,82	20,79	352,06	19,50	349,96	18,11	
366,06	32,01	369,95	30,60	352,25	19,34	
378,94	47,63	380,92	50,14	353,75	20,52	
390,30	67,22	382,25	53,11	355,56	21,96	
392,62	72,24	382,69	53,94	357,10	23,65	
393,05	306	383,32	460	359,12	25,71	
393,27	425	384,47	1203	360,26	27,23	
396,34	2104	385,01	1547	361,57	27,61	
397,41	2686	386,45	2475	362,07	202	
399,30	3720	387,01	2835	362,65	672	
400,24	4233	389,77	4617	363,37	1267	
400,34	4290	391,53	5749	363,94	1729	
401,63	4992	391,92	5998	364,36	2081	
401,94	5161	392,41	6317	364,53	2220	
402,44	5432	393,32	6900	369,48	6286	
404,51	6563	394,37	7578	374,98	10793	
406,89	7865	394,82	7865	381,87	16455	
408,23	8594	395,78	8482			
411,02	10119	396,42	8898			
414,43	11982	397,48	9578			
415,52	12575	398,49	10231			
419,03	14491	399,30	10750			
421,85	16033	401,42	12116			
		407,96	16327			

Таблица 2. РТ-данные двухфазной линии жидкость-газ Этилциклогексана

T,K	Р,кПа								
290	1,01	330	7,86	370	35,27	410	117	450	318
310	3,34	350	17,72	390	67,16	430	196	470	480

Таблица 3. Параметры фазового перехода жидкость-газ Этилциклогексана

ρ , κ Γ / M^3	656,7	673,7	691,2	712,1	719,9	729,9	750,67
T,K	469,35	448,17	425,16	401,95	392,62	382,69	361,86
Р,кПа	470	306	172	97,04	72,24	53,94	27,65

- [1] Расулов С.М., Хамидов М.М.Установка для одновременного измерения давления, температуры, объема и вязкости жидкостей и газов// Приборы и техника эксперимента. 1999. №1. С.148
- [2] Rasulov S.M., Abdulagatov I.M.PVTx measurements of water-n-pentane mixtures in the critical and supercritical regions// J. Chem. Eng. Data. 2010. V. 55. P. 3247
- [3] Rasulov S.M., Radzhabova L.M., Abdulagatov I.M., Stepanov G.V. Experimental study of the PVT and C_vVT properties of n-butanol in the critical region// Fluid Phase Equuilib.
- 2013. V.337. P.323
- [4] Orakova S.M., Rasulov S.M., Abdulagatov I.M.Experimental study of the PVTx relationship, L-L-V and L-V phase boundary of n-hexane + water mixtures near the upper and lower critical lines// Phys. Chem. Liquids. 2014. V.52. P.130
- [5] Orakova S.M., Rasulov S.M., Abdulagatov I.M.Experimental study of the isomorphism behavior of weakly (C_{VX}) and strongly (C_{PX} , K_{TX}) singular properties of 0.082n- hexane+0.918water mixtures near the upper critical point// J. Mol. Liquids. 2013. V.187. P.7
- [6] Расулов С.М., Оракова С.М., Абдулагатов И.М. Термодинамические и структурные свойства смеси н-гексан вода вблизи критической точки чистого растворителя// Теплофизика высоких температур. 2015. Т.53, №4. С.524
- [7] Расулов С.М., Оракова С.М., Исаев И.А. Термические свойства и фазовые диаграммы водно-углеводородных систем// Теплофизика высоких температур. 2016. Т.54, №2. С.223

Структурные барические фазовые переходы в n-CdAs₂

Сайпулаева Л.А. 1 , Абдулвагидов Ш.Б. 1 , Тебеньков А.В. 2 , Маренкин С.Ф. 3 , Алибеков А.Г. 1 , <u>Пирмагомедов З.Ш. 1 </u>

¹Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия e-mail: l.saypulaeva@gmail.com

²Уральский федеральный университет, Институт естественных наук и математики, Екатеринбург, Россия

³Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

Монокристаллы *n*-CdAs₂ выращены методом направленной кристаллизации расплава по Бриджмену и аттестованы в институте общей и неорганической химии им. Н.С. Курнакова (ИОНХ РАН) [1]. Давления до 50 GPa создавалось в КВД с наковальнями из искусственных алмазов типа «карбонадо» [2 - 4]. Рентгеноструктурные измерения проводили в КВД с прозрачными наковальнями и окнами для ввода и вывода рентгеновского

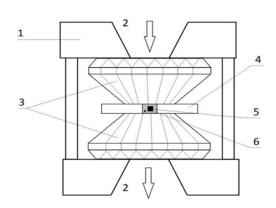


Рис.1. Камера высокого давления с алмазными наковальнями для рентгеноструктурных исследований; 1- корпус камеры, 2- входные и выходные окна для рентгеновского излучения, 3 - алмазные наковальни, 4 - гаскета из рениевой фольги, 5 - образец, 6 - среда, передающая давление.

излучения (рис.1). гаскеты была качестве фольга, рениевая средой, передающей давление жидкий аргон. Величина давления камере оценивалась ПО сдвигу линии люминесценции рубина. Для съемки

использовалось

излучение $K\alpha_1$ молибдена.

Для регистрации фазовых переходов при изменении структуры кристаллической

решетки n-CdAs₂ были проведены рентгеноструктурные исследования. На дифрактограмме n-CdAs₂ при атмосферном давлении видны рефлексы исходной тетрагональной фазы и пики, принадлежащие рениевой гаскете (рис. 2). Рениевые пики хорошо совпадают при всех исследованных давлениях на рис. 2 с параметром a кристаллической структуры рения (Табл. 1): известно, что кристаллическая структура Re гексагональная плотноупакованная с параметрами решетки a = 2.761 Å, c = 4.456 Å, c/a = 1,614.

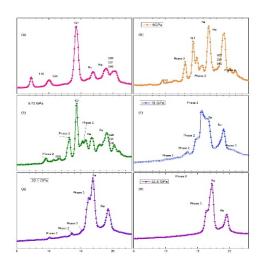


Рис. 2 Дифрактограммы монокристалла диарсенида кадмия CdAs₂ в алмазной камере при атмосферном давлении (а) и под давлениями 6 GPa (б), 9.75 GPa (в), 19.1 GPa (г), 32.1 GPa (д) и 44.8 GPa (е).

На рисунке 2(b) представлена дифрактограмма при 6.0 GPa, на которой место предсказанный имеет свойствам фазовый электрическим переход, соответствующий нарождению Далее были продолжены исследования n-CdAs₂ с целью изучения электрического поведения сопротивления (R), магнитосопротивления (MR), и термоэдс квазигидростатических при (S) давлениях.

Стоит отметить, что рений, как кристаллически плотноупакованный, изменяет параметров решетки даже при самых высоких давлениях, ввиду чего протечки передающей давление жидкости (Ar) исключались, а результаты исследований соответствуют тем давлениям, при которых они проводились. При атмосферном давлении n-CdAs₂ имеет тетрагональную структуру a=7.96 Å, c=4.67 Å, c/a=0.59; плотность 5.8 g/cm^3 , четыре молекулы CdAs₂ в элементарной ячейке. Пространственная группа D_4^{10} , $I4_122$.

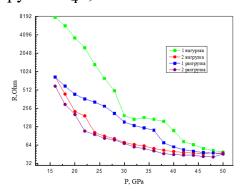


Рис. 3. Барическая зависимость сопротивления.

На рис. 3 барическая зависимость сопротивления в полулогарифмических координатах. Из которого видно, что в отсутствии магнитного поля n-CdAs₂ переходит в низкоомное состояние при давлениях в области 25-30 GPa.

Во втором цикле «компресии-декомпресии» отчетливо проявляется гистерезис электросопротивления шириной 20 GPa. Первый цикл «компресии-декомпресии» иллюстрирует лишь процесс улучшения механических свойств из-за компактирования (барозакалки) образца, в результате чего во 2^{-om} цикле данные стабилизируются, то есть становятся хорошо воспроизводимыми.

Магнитное поле величиной 1 Т переводит n-CdAs₂ в низкоомное состояние, которое происходит в области давлений 35-40 GPa (Рис. 4).

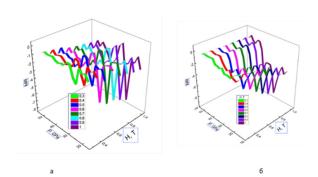


Рис. 4. Барические зависимости магнетосопротивления: а-первый цикл увеличения давления; б- второй цикл увеличения давления.

Барические зависимости магнетосопротивления при различных полях для двух циклов давления обнаруживают ОМС во всем интервале давлений. После снижения давления сопротивление образцов возвращается исходное состояние, что связано необратимыми изменениями структуре материалов. Наибольшее ОМС, достигающая наблюдается около 15%,

магнитном поле ≈ 1 Т в области давлений 35-40 GPa.

Термоэдс (S) также информативный кинетический коэффициент в явлении переноса. На рис.5 (кривая 1) зависимость S при 1^{-om} цикле сжатия $n\text{-CdAs}_2$, а на рис.5 (кривая 2) - при повторном сжатии: в обоих случаях термоэдс уменьшается с давлением, причем при первом сжатии от ~130 падает до ~25 μ V/0, а при повторном сжатии от ~100 до ~20 μ V/0. В целом поведение S можно объяснить тем, что с ростом давления $n\text{-CdAs}_2$ становится вырожденным полупроводником.

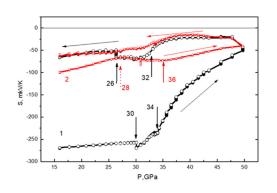


Рис. 5. Барическая зависимость термоэдс: 1 — первый цикл; 2 — второй цикл.

Уменьшение же S с ростом давления можно объяснить тем, что при повторной компрессии, вследствие гистерезиса, *n*-CdAs₂ не возвращается в первоначальное состояния, в результате процесс восстановления первоначального состояния происходит при более высоком давления.

Из рисунка 2 видно, что предсказанный в [5] по электрическим свойствам фазовый переход произошел при 6 GPa. При

давлении 9.75 GPa значительная доля исходной тетрагональной фазы всё еще существует (рис.2). Новая фаза не идентифицирована, на рисунке ее пики обозначены как phase 2. При давлении 19 GPa (рисунок 2в) на дифрактограмме пики исходной тетрагональной фазы отсутствуют, соответствующие изменения заметны и в межплоскостных расстояния: при 9.5 GPa отсутствие исходной тетрагональной фазы видно из отсутствия данных для плоскостей hkl=110 и 020 – остается только пик для плоскости «020», который, однако, исчезает при давлении 19.1 GPa (Таб. 1). При давлении 32.1 GPa, кроме пиков фазы 2, на рентгенограмме появляется

новый пик с высокой интенсивностью, который не относится к барической фазе 2 (рис. 2г), а относится к новой фазе "Phase3", индуцированной этим давлением, а при давлении 44.8 GPa образование этой фазы заканчивается, тем самым можно констатировать, что при давлениях в интервале от 32.1 до 44.8 GPa состоящий в превращении "Phase2" в "Phase3".

Таблица 1. Межплоскостные расстояния в кристаллической решетке CdAs2 при давлениях до 50 GPa, рассчитанные из рентгеноструктурных данных с помощью формулы Вульфа-Брэгга.

X-ray difraction data for CdAs ₂ under PRESSURES up to 50 Gpa									
P (Gpa)	hkl	θ_0	hkl	θ_{0}	hkl	θ_{o}	hkl	$\theta_{\rm o}$	θ_{0}
0	110	7.25	020	10.08	121	14.29	Re	16.94	18.94
-	"phase2"	7.25	12.96	14.83	15.63				
6	110	7.78	020	10.42	121	14.22	Re	16.59	
9.75	"phase2"	9.60	13.22	15.35	121	14.41	Re	16.71	19.12
19.1	"phase2"	10.02	13.41	14.74	15.62	20.37	Re	16.66	19.07
32.1	"phase2"	10.08	13.60	15.14	Phase3	16.25	Re	16.89	19.32
44.8	"phase3"	16.53					Re	16.17	19.58

Interplanar distances calculated from X-ray difraction data for CdAs ₂										
	$d=n \lambda/(2\sin\theta)$			λ= 1.54		406	Å	n=	1	
P (Gpa)	hkl	d (Å)	hkl	d (Å)	hkl	d (Å)	hkl	d (Å)	d (Å)	
0	110	6.10	020	4.40	121	3.12	Re	2.64	2.37	
6	"phase2"	6.10	3.43	3.01	2.86					
6	110	5.69	020	4.26	121	3.14	Re	2.70		
9.75	"phase2"	4.62	3.37	2.91	121	3.10	Re	2.68	2.35	
19.1	"phase2"	4.43	3.32	3.03	2.86	2.21	Re	2.69	2.36	
32.1	"phase2"	4.40	3.28	2.95	Phase3	2.75	Re	2.65	2.33	
44.8	"phase3"	2.71					Re	2.77	2.30	

- [1] С.Ф. Маренкин, А.М. Раухман, А.Б. Маймасов, В.А. Попов, Неорганические материалы **33**. №12. 1439 (1997).
- [2] L.F. Vereshchagin, E.N. Yakovlev, B.V. Vinogradov, et al. High Temperatures High Pressures **6**, 499 (1974).
- [3] A.N. Babushkin. High Press. Res. 6, 349 (1992).
- [4] A.N. Babushkin, G.I. Pilipenko, F.F. Gavrilov. J.Phys.: Condens. Matter. 5, 8659 (1993).
- [5] J.B. Clark, C.W.F.T. Pistorius, Stable and Metastable Equilibria Near the Melting Curves of CdAs2 and ZnAs2 to High Pressures // High Temp. High Pressures, **5**, 319, (1973).

Релаксационные эффекты баросопротивления в n- CdAs₂

Сайпулаева Л.А. 1 , Тебеньков А.В. 2 , Абдулвагидов Ш.Б 1 ., Алибеков А.Г. 1 , Пирмагомедов З.Ш. 1 , Маренкин С.Ф. 3

¹Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия e-mail: l.saypulaeva@gmail.com

²Уральский федеральный университет, Институт естественных наук и математики, Екатеринбург, Россия

Настоящая работа посвящена изучению барических зависимостей электросопротивления и релаксационных явлений n-CdAs₂ в условиях воздействия высоких давлений (до 50 GPa) и магнитных полей (до 1 T).

Монокристаллы диарсенида кадмия были получены методом направленной кристаллизации расплава по методу Бриджмена [1]. Влияние высокого давления на электрофизические свойства композитов исследовали в камере высокого давления (КВД) с алмазными наковальнями типа «закругленный конус-плоскость». Схематическое изображение КВД в разрезе на рис. 1.

Принцип создания давлений до 50 GPa, технические характеристики и градуировка КВД описаны в деталях в [2-4].

Для оценки роли релаксационных эффектов, пластической обусловленных деформацией материалов, некоторых фиксированных значениях приложенной нагрузки (при увеличении и последующем уменьшении давления) измерялись зависимости электросопротивления R

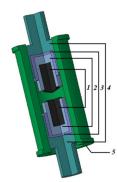


Рис.1 Схематическое изображение камеры высокого давления в разрезе: 1 — наковальни, 2 — обоймы, 3 — изолятор, 4 — вкладыши, 5 — цилиндр.

времени воздействия нагрузки τ , анализируя поведение зависимостей $R(\tau)$. При этом проводили также оценку величины относительного изменения электросопротивления, при каждом значении давления из исследуемого диапазона (при приложении новой нагрузки), следующим образом.

$$\frac{\Delta R}{R} = \frac{R(\tau_{rel}) - R(\tau_0)}{R(\tau_0)} \tag{1}$$

где τ_0 =0 — момент времени непосредственного приложения новой нагрузки на образец - τ_{rel} — время, в течение которого устанавливается постоянное значение электросопротивления после приложения новой фиксированной нагрузки.

³Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

При измерении магнетосопротивления камеру высокого давления помещали в панцирный электромагнит, создававший поперечное магнитное поле от 0 и до 1 Тл при каждом фиксированном значении давления относительное магнитосопротивление MR в % оценивали по формуле

$$MR = 100\% \cdot \frac{R(B) - R(0)}{R(0)} \tag{2}$$

где R(B) - электросопротивление в поперечном магнитном поле с индукцией B, R(0) - электросопротивление в отсутствии магнитного поля.

На рисунке 2 приведены результаты измерения барической зависимости электросопротивления R(P) n-CdAs₂ при комнатной температуре до 50 GPa. Были проведены по несколько циклов компрессии-декомпрессии давления. На графике показаны два полных цикла увеличения и снижения давления, приложенного к одному и тому же образцу.

Puc. 2 Электросопротивление n-CdAs2 в зависимости от давления.

Из графика R(P) видно, что для первого увеличения давления, можно выделить три участка, в которых наблюдаются монотонные зависимости, близкие к линейной: 16-28, 30-38 и 42-50 GPa.

Кривая, соответствующая снижению давления, также разбивается на три линейных участка, но уже с другими границами: 16 – 22, 22 – 38 и 38 – 50 GPa. В диапазоне давлений от 16 до

50 GPa n-CdAs₂ испытывает два структурных изменения, полностью обратимых и воспроизводимых при последующих бароциклированиях.

Зависимости электросопротивления от времени $R(\tau)$ при фиксированном давлении хорошо аппроксимируются одной (при $\tau_1 = \tau_2$) или двойной экспонентами:

$$R(\tau) = A_1 e^{-\tau/\tau_1} + A_2 e^{-\tau/\tau_2} \tag{3},$$

где т — время, прошедшее после изменения внешнего давления, τ_1 и τ_2 - времена релаксации проводимости [5]. Меньшее время $\tau_{min}=Min\{\tau_1,\ \tau_2\}$ соответствует релаксационным процессам, связанным с изменением концентрации носителей и ширины запрещенной зоны вследствие изменения расстояний между атомами и изменением энергии носителей. Большее время $\tau_{max}=Max\{\tau_1,\ \tau_2\}$ характеризует процессы, обусловленные релаксацией структурных дефектов в кристаллической решетке. Кроме того, хотя наиболее адекватной является аппроксимация (2), проводится также аппроксимация и одиночной экспонентой:

$$(\tau) = Ae^{-\tau/\tau_{med}} \tag{4}$$

В Выр. (4) τ_{med} – т.н. «среднее» время релаксации, в общем случае совпадающее с τ_1 и τ_2 в выражении (3) при $\tau_1 = \tau_2$ и отличное и от τ_1 и от τ_2 при $\tau_1 \neq \tau_2$. Проведенная оценка среднего времени релаксации τ_{med} по Выр.

(4) дает возможность определить преимущественные процессы в материале: если оно близко к τ_{min} , преобладают процессы, связанные с изменением параметров носителей, если τ_{med} близко к τ_{max} , преобладают процессы, связанные с релаксацией структуры кристаллической решетки (в условиях воздействия высокого давления). Полученная зависимость $R(\tau)$ для n-CdAs₂ при давлении 44 GPa представлена на рис. 3.

Данная зависимость $R(\tau)$ прекрасно описывается Выр. (3). Аналогично были аппроксимированы временные зависимости электросопротивления для всех давлений. Зависимость т₁ первого времени релаксации электросопротивления от давления $\tau_1(P)$ представлена рис. 4. Показаны на зависимости двух **ШИКЛОВ** ДЛЯ Наибольшие увеличения давления. релаксации времена

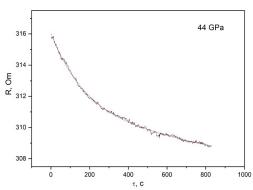


Рис. 3 Зависимость R(τ) при давлении 44 GPa.

электросопротивления зафиксированы в области давлений 22 - 30 GPa характерной для структурного превращения в диарсениде кадмия (Рис. 4).

При первом цикле увеличения давления можно выделить два пика

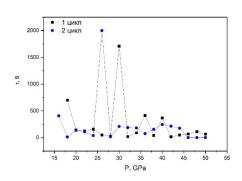


Рис. 4. Зависимость времени релаксации электросопротивления от давления τ(P) для двух циклов нагружения.

времени релаксации τ₁. Первый пик соответствует давлению 30 GPa, время релаксации при этом примерно увеличивается на порядок в сравнении с временами до 28 GPa и достигает 1800 с. Пик довольно узкий, уже при 32 GPa наблюдается резкое падение времени релаксации до начальных значений. Второй пик возникает при давлениях 36-40 GPa. Он уже не такой интенсивный и узкий как первый, время релаксации

возрастает только в 2-3 раза по сравнению с исходным. На втором цикле увеличения давления первый пик сохраняется и смещается в область низких давлений до значений 26 GPa. А вот область, соответствующая второму пику, не так ярко выражена, как при первом нагружении. Диапазон давлений второго пика можно обозначить от 36 до 46 GPa.

Для второго времени релаксации электросопротивления τ_2 , соответствующего более медленным процессам, общая зависимость сохраняется такая же, как для τ_1 . При давлениях 30-32 и 40-42 GPa аппроксимация не дает удовлетворительных результатов для определения величины τ_2 .

Уменьшение электросопротивления с увеличением индукции магнитного поля наблюдали и при исследовании электрических свойств CdAs₂ при давлениях до 9 GPa [5] и примерно при 5.5 GPa в CdAs₂ наблюдали проявления фазового перехода.

Исследование частично поддержано Государственным заданием ИОНХ РАН

- [1] С.Ф. Маренкин, А.М. Раухман, А.Б. Маймасов, В.А. Попов. Неорган. Материалы **33**, 12, 1439 (1997).
- [2] D.L. Decker. J. Appl. Phys. 42, 8, 3239 (1971).
- [3] Бабушкин А.Н. Электропроводность и термоЭДС галогенидов щелочных металлов и других материалов при давлениях 20-50 GPa. Уральский государственный университет им. А.М. Горького. (1992).
- [4] A. Onodera, N. Kawai, K. Ishizaki, I.L. Spain. Solid State Commun. 14, 9, 803 (1974).
- [5] A.Y. Mollaev, L.A. Saypulaeva, R.K. Arslanov, S.F. Gabibov, S.F. Marenkin. High Pressure Research **22**, 181 (2002).

Флуктуации, ренормировка и диаграммные разложения в теории критического поведения

Варнашев К.Б.

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ», Санкт-Петербург, Россия e-mail: k.varnashev@mail.ru

Сегодня хорошо известно, что для построения количественной теории критического поведения веществ, испытывающих различные по своей природе фазовые переходы (магнитные, структурные, сверхпроводящие), необходимо учесть влияние сильно развитых взаимодействующих между собой флуктуаций параметра порядка (ПП) на свойства исследуемых систем. Флуктуации ПП охватывают большие расстояния и крайне медленно затухают. Это приводит к характерному для теории критических явлений сингулярному поведению различных термодинамических величин таких, например, как теплоёмкость или намагниченность. Гипотеза критического скейлинга (гипотеза подобия) [1,2] позволяет учесть влияние флуктуаций ПП на свойства фазового перехода в критической точке. Суть гипотеза подобия заключается в предположении, что ответственные за критические сингулярности части свободной энергии (функционала Ландау-Вильсона) представляют собой обобщённые однородные функции некоторой комбинации термодинамических переменных (приведённой температуры, внешнего магнитного поля и т. п.), через критические размерности которых выражаются все остальные критические показатели. В самой точке фазового перехода критические же контролирующие аномальное поведение термодинамических функций, связаны между собой скейлинговыми соотношениями, т. е. выражаются друг через друга.

работе мы исследуем теоретико-полевую модель, данной описывающую антиферромагнитные фазовые переходы в кристаллах $TbAu_2$, DyC_2 , K_2IrCl_6 , TbD_2 и в ниодиме [3,4]. Мы демонстрируем, как акты многоступенчатых промежуточных сколь угодно высокой кратности процессов рассеяния флуктуонов друг на друге вблизи точки фазового перехода могут быть естественным образом учтены посредством диаграмм Фейнмана в рамках перенормированной теории возмущения. Именно, мы показываем, как константы ренормировки теории, позволяющие перейти от «голых» (нефизических) зарядов и массы к их «одетым» (учитывающим флуктуации) аналогам, представляются степенными рядами, состоящими из бесконечного набора диаграмм Фейнмана, где линиям отвечают движущиеся частицы, а точкам – их взаимодействие друг с другом. Каждая диаграмма требует вычисления трёх определяющих её коэффициентов: симметрийного множителя, тензорной свёртки и значения интеграла, соответствующего данному графу. Последний вклад вычисляется, как правило, либо в $(4-\varepsilon)$ -мерном пространстве, либо в пространстве фиксированной размерности D = 3 (или D = 2). Хотя диаграммные собой бесконечные, разложения представляют вообще расходящиеся ряды по заданному параметру, в действительности мы всегда имеем дело лишь с кусками этих рядов, соответствующими L-петлевому приближению (порядку теории возмущения). Однако даже это позволяет извлечь из них достаточно надёжные не только качественные, но и количественные предсказания относительно критического поведения исследуемых веществ, если для численной обработки теоретико-полевых разложений применить надлежащую процедуру пересуммирования [5-7].

- [1] L.P.Kadanov, Physics **2**, 263 (1966).
- [2] А.З.Паташинский, В.А.Покровский, Флуктуационная теория фазовых переходов, Наука, Москва (1982).
- [3] D.Mukamel, S.Krinsky, Phys. Rev. B 13, 5078 (1976).
- [4] A.I.Mudrov, K.B.Varnashev, Письма в ЖЭТФ 74, 309 (2001).
- [5] J.Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford (1996).
- [6] A.I.Mudrov, K.B.Varnashev, Phys. Rev. E 58, 5371 (1998).
- [7] A.Pelissetto, E.Vicari, Phys. Rep. 368, 549 (2002).

Сопоставление коэффициента теплоотдачи к перегретым образцам растворов жидких топлив для ДВС и биотоплив со спиртом

Поволоцкий И.И.¹, <u>Волосников Д.В.</u>¹, Губин А.А.^{1,2}, Скрипов П.В.¹

¹ Институт теплофизики УрО РАН, Екатеринбург, Россия

е-mail: dima_volosnikov@mail.ru

² УрФУ имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

е-mail: artyom.gubin@yk.com

Спирты широко используется в двигателях с воспламенением от сжатия, в качестве добавки к нефтяному топливу, из-за высокого октанового

числа спиртов и большой доли кислорода содержащегося них [1]. Недостатком спиртов, как компонентов топлива для двигателей, является существенное отличие ИΧ физико-химических свойств от стандартного нефтяного дизельного топлива, в связи с этим, при их использовании рабочие процессы в двигателях протекают c некоторыми особенностями. Это, в свою очередь, влияет на

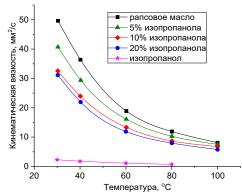


Рис.1 Температурная зависимость кинематической вязкости исходного образца растительного масла и при различных добавках изопропилового спирта [4].

эксплуатационные, экономические и экологические показатели двигателей [2, 3]. Поэтому возникает необходимость исследования таких смесей. Также спирты используются, как снижающая вязкость и противоморозная добавка к биотопливам из растительных масел (см. рис. 1).

Цель данного исследования — получение нового знания о теплоотдаче к растворам: нефтяное топливо — изопропиловый спирт и рапсовое масло — изопропанол. Эти растворы являются модельными растворами для разработки перспективных топлив. Исследовались образцы изопропилового спирта квалификации ХЧ (ТУ 6-09-402-87), рапсового пищевого масла холодного отжима (ГОСТ 31759-2021), керосина (ГОСТ 10227-2013) и дизельного топлива (ГОСТ 305-2013), а также их смеси. Смеси готовились с использованием магнитной мешалки Heidolph MR Hei-Tec в течение 30 минут до получения однородного состояния.

Для исследования теплоотдачи к образцам раствора и исходным компонентам был применен метод управляемого импульсного нагрева проволочного зонда, погруженного в исследуемую жидкость, а именно, режим термостабилизации при достижении температурой зонда заданного значения $T_{\rm st}(t) = const$ [5]. Суть данного режима состоит в создании

кратковременных квазиизотермических условий для импульсно нагреваемого зонда диаметром 20 мкм в веществе при соответствующем регулировании мощности его нагрева P(t). При нагреве температура зонда увеличивается от начального значения T_0 до выбранного значения $T_{\rm st}(t_2 >> t_1) \approx {\rm const}$ за время порядка $t_1 \sim 10^{-4}\,{\rm c}$ и в дальнейшем поддерживается постоянной на заданном интервале времени $t_2 = 100\,{\rm mc}$.

Исследуемые образцы растворов характеризуются полной совместимостью исходных компонентов в исследуемом диапазоне концентраций. На основе полученных опытных данных определены значения мгновенного коэффициента теплоотдачи при атмосферном давлении. Значения $T_{\rm st}$ изменялись от импульса к импульсу в диапазоне (100 \div 400)°С. Исследования проводились как в области устойчивых состояний,

так и в области перегретых (относительно линии равновесия жидкость-пар) состояний. Обнаружено, что малые добавки $(1 \div 5)$ мас. % изопропилового спирта в растительное масло значительно 100-150 (на градусов) снижают температуру вскипания перегретой смеси в режиме её термостабилизации. В области температур свойственных кондуктивному теплообмена (100 режиму 225)°С обнаружено, что добавки

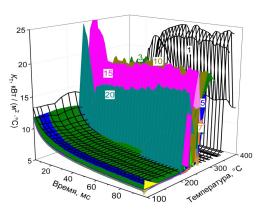


Рис.2 Мгновенный коэффициент теплоотдачи к раствору рапсовое масло - изопропанол. Числа у поверхностей соответствуют содержанию изопропанола в мас.%.

спирта снижают теплоотдачу к импульсно перегретой смеси спирт – масло, (см. рис. 2). Данное (невозмущенное вскипанием) поведение коррелирует с данными по теплопроводности в области устойчивых состояний.

Исследование выполнено за счет гранта Российского научного фонда № 23-69-10006, https://rscf.ru/project/23-69-10006/

- [1] А.А.Анфилатов, Н.С.Анфилатова, Актуальные вопросы совершенствования технологии производства и переработки продукции сельского хозяйства №20, 490 (2018).
- [2] В.И.Батыров, Ю.А. Шекихачев, Известия Кабардино-Балкарского государственного аграрного университета им. В. М. Кокова **30** №4, 65 (2020).
- [3] В.А.Лиханов, О.П.Лопатин, Двигателестроение **276** №2, 26 (2019).
- [4] T. Laza, Á. Bereczky, Fuel **90**, 803 (2011).
- [5] Д.В. Волосников, И.И. Поволоцкий, А.А. Старостин, П.В. Скрипов, ТВТ, 59 (3), 384 (2021).

Зонная структура квантовых точек PbS с лигандами Cl И FA

Акманова Г.Р¹, Биккулова Н.Н.², Ермилов Н.В.², Сафаргалиев Д.И.²

¹Уфимский университет науки и технологий, Уфа, Россия

е-таіl: grakmanova@mail.ru1

²Стерлитамакский филиал Уфимского университета науки и технологий,

Стерлитамак, Россия

е-таіl: bickulova@mail.ru

Первые исследования халькогенидов свинца появились более 70 лет тому назад. Селенид свинца PbSe и сульфид свинца PbS являются полупроводниковыми материалами, используемыми в качестве ИК-детекторов, работающих в спектральном диапазоне от 1 до 5 мкм [1, 2]. За последние несколько десятилетий было синтезировано множество новых наноструктур и разработано технологий для улучшения характеристик системы ИК-детектирования. [3,4]. Поликристаллические тонкие пленки PbSe используются также для диодных лазеров, термоэлектрических охладителей и ИК-солнечных элементов [5].

Термоэлектрические материалы позволяют преобразовывать тепло в электричество и являются перспективным инструментом для решения энергетических и экологических проблем. Однако эффективность преобразования обнаруженных в настоящее время термоэлектрических материалов составляет всего около 5–20%, что ограничивает экономическую целесообразность для массового использования [6].

Из-за сложности синтеза и определения характеристик детальная экспериментальная оценка функциональных свойств материалов как правило требует много времени и затрат. Поэтому трудно найти высокоэффективные функциональные материалы путем экспериментального отбора из большого количества соединений.

Высокопроизводительные вычисления представляют собой способ обработки огромных объемов данных на очень высоких скоростях с использованием нескольких компьютеров и устройств хранения, объединенных в единую систему. Это перспективный инструмент для скрининга высокопроизводительных функциональных материалов.

Геометрия лигандированных квантовых точек оптимизируется с помощью программного обеспечения Atomistix ToolKit (ATK). В данном программном обеспечении глобальная структурная оптимизация реализуется с помощью генетического алгоритма. Он работает путем генерации начального набора случайных конфигураций и последующего их развития с помощью генетических операторов.

Электронная структура и оптические свойства были рассчитаны с использованием метода теории функционала плотности — линейной

комбинации атомных орбиталей (DFT-LCAO), встроенного в программное обеспечение ATK.

Было проведено сравнение электронных и оптические свойств массивов квантовых точек PbS без лиганда и с лигандами Cl (хлор) и FA (формамидиний). Структуры квантовых точек изображены на рис.1.

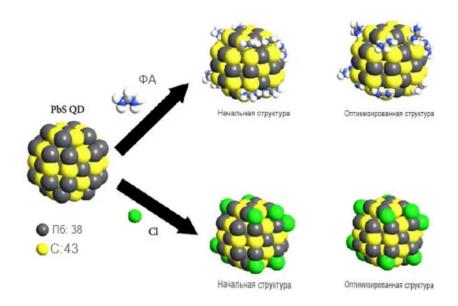


Рис.1. Структуры квантовых точек

К одной квантовой точке в каждом случае добавлялись десять лигандов. Квантовые точки были расположены на квадратной решётке с элементарной ячейкой (1×1) и периодическими границами. Расстояние между квантовыми точками составляло 1,7 нм, что является максимальным расстоянием, при котором наблюдался эффект взаимодействия между квантовыми точками в зонной структуре.

Зонная структура, плотность состояний и коэффициент оптического поглощения рассчитывались с помощью пакета DFT, встроенного в программное обеспечение ATK.

На рисунках 2—4 показана зонная структура массивов квантовых точек с различными лигандами. В середине запрещённой зоны находится явно выраженный уровень Ферми, указывающий на полупроводниковые свойства исследуемых структур.

Для наглядности сравнения на рис. 2 представлены результаты моделирования зонной структуры квантовых точек PbS без лиганда. Ширина запрещённой зоны составила 1,647 эВ.

На рис. 3 представлены результаты моделирования зонной структуры квантовых точек PbS с лигандом Cl. Ширина запрещённой зоны составила 1,477 эВ.

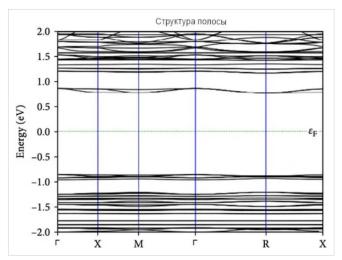
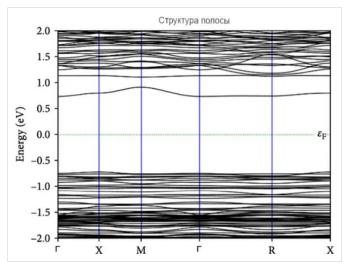
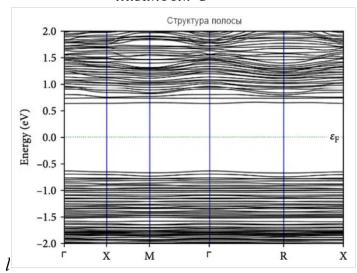




Рис.2. Рассчитанная зонная структура для квантовых точек PbS без лиганда

 $Puc.3.\ Paccчитанная\ зонная\ структура\ для\ квантовых\ точек\ PbS\ c$ лигандом C

 $Puc.4.\ Paccчитанная\ зонная\ структура\ для\ квантовых\ точек\ PbS\ c$ лигандом FA

На рисунках 2—4 также показаны промежуточные полосы, расположенные в диапазоне энергий от 0.5 до 1.0 эВ. Данные полосы характерны как для массива квантовых точек PbS, так и для массива квантовых точек с лигандами Cl. Однако для структуры полос массива квантовых точек с лигандами FA, как показано на рисунке 4, было обнаружено отсутствие признаков формирования промежуточной полосы. Вместо этого сформировался континуум полос с нижней границей полосы при энергии ~ 0.6 эВ.

С помощью моделирования зонной структуры методом DFT удалось убедиться, что массив квантовых точек PbS с лигандом Cl у которых ширина запрещённой зоны составляет 1,48 эВ, а промежуточная зона находится в диапазоне от 0,5 до 1,0 эВ, больше похож по электронной структуре на квантовые точки PbS без лиганда.

В отличие от квантовых точек PbS с лигандом Cl, квантовые точки PbS с лигандом FA имеют энергетическую щель 1,28 эB, что примерно на 0,37 эВ меньше, чем энергетическая щель 1,65 эВ для массива квантовых точек PbS без лиганда.

Проанализированы электронные свойства квантовых точек PbS с лигандами Cl и FA. Для структуры полос массива квантовых точек с лигандами FA было обнаружено отсутствие признаков формирования промежуточной полосы. Вместо этого сформировался континуум полос с нижней границей полосы при энергии около ~ 0,6 эВ. Чтобы лучше понять данное явление, предлагается исследовать плотность состояний и профиль оптического поглощения квантовых точек PbS с лигандами Cl и FA, так как в перспективе это может помочь выявить новый тип повышения подвижности для дальнейшего усовершенствования термоэлектрических устройств.

- [1] B.Weng, J.Qiu, L.Zhao, Z.Yuan, C.Chang, Z. Shi, Quantum Sens. Nanophoton **XI**, 899311 (2013).
- [2] A.Rogalski, Opto-Electron. Rev. 20, P. 279 (2012).
- [3] Y.X.Ren, T.J.Dai, W.B.Luo, X.Z.Liu, Vacuum 149, 190 (2018).
- [4] J.S.Grayer, S.Ganguly, S.S.Yoo, Proceedings of SPIE 11082, 81 (2019).
- [5] T.N.Asokan, K.S.Urmila, B.Pradeep, J. Mater. Sci.: Mater. Electron. **27**, 5646 (2016).
- [6] C.Gayner; K.K.Kar, Prog. Mater. Sci. 83, 330 (2016).

Плотность состояний и профиль оптического поглощения квантовых точек PbS с лигандами Cl И FA

Биккулова Н.Н.¹, Ермилов Н.В.¹, Акманова Г.Р.², Курбангулов А.Р.¹ Стерлитамакский филиал Уфимского университета науки и технологий, Стерлитамак, Россия e-mail: bickulova@mail.ru

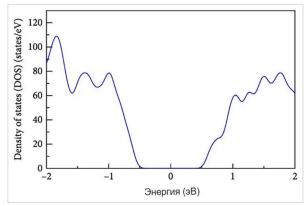
² Уфимский университет науки и технологий, Уфа, Россия e-mail: grakmanova@mail.ru

Селенид свинца PbSe и сульфид свинца PbS являются полупроводниковыми материалами, используемыми в качестве ИК-детекторов, работающих в спектральном диапазоне от 1 до 5 мкм и в ИК-солнечных элементах.

Высокопроизводительные вычисления, представляющие собой способ обработки больших объемов данных с использованием мощных компьютеров и устройств хранения, объединенных в единую систему – альтернативный метод для исследования возможностей термоэлектрических соединений [2].

Используя данный метод, удалось проанализировать электронные свойства квантовых точек PbS с лигандами Cl и FA. Для структуры полос массива квантовых точек с лигандами FA было обнаружено отсутствие признаков формирования промежуточной полосы. Вместо этого сформировался континуум полос с нижней границей полосы при энергии около ~ 0.6 эВ [3].

Чтобы лучше понять описанное выше явление, были исследованы плотность состояний и профиль оптического поглощения квантовых точек PbS с лигандами Cl и FA.


Плотность состояний и коэффициент оптического поглощения были рассчитаны с использованием метода теории функционала плотности и линейной комбинации атомных орбиталей (DFT-LCAO), встроенного в программное обеспечение Quantum ATK [4].

Метод DFT, заключается в том, что энергия электронной системы однозначно определяется электронной плотностью, при этом не происходит поиска волновой функции. Определяется электронная плотность системы, которая зависит от трех пространственных координат и находится функционал, который связывает электронную плотность с энергией системы. [5].

Метод LCAO заключается в том, что валентные электроны кристалла образуются из атомных орбиталей. Из них составляется линейная комбинация. Движение валентных электронов описывается уравнением Шредингера, которое приводится к системе линейных уравнений для коэффициентов. [6].

Геометрия квантовых точек как с лигандом FA, так и с лигандом Cl оптимизирована с помощью метода DFT-LCAO на основе рандомизированной начальной структуры.

На рис. 1-6 показаны рассчитанные значения плотности состояния и оптического поглощения, спроецированные на орбиту, для FA-лигандированных и Cl-лигандированных квантовых точек.

Puc.1. Оптическое поглощение квантовых точек PbS с лигандами FA

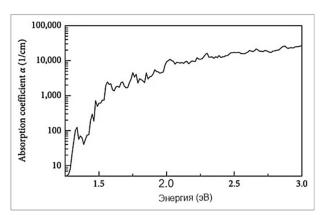


Рис.2. Плотность состояний квантовых точек PbS с лигандами FA

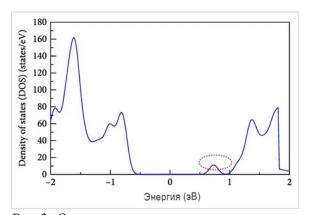


Рис.3. Оптическое поглощение квантовых точек PbS с Cl-лигандами

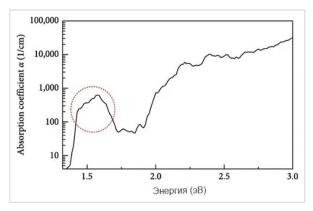


Рис.4. Плотность состояний квантовых точек PbS с Cl-лигандами. Вклад промежуточной полосы выделен красным пунктирным кругом

В полученных данных моделирования плотности состояний наблюдается отдельный пик в зоне проводимости вблизи уровня Ферми для квантовых точек с лигандами С1 (выделен красным пунктиром на рис.3). Данный пик отсутствует в плотности состояний квантовых точек с лигандами FA (рис.1), и плотность состояний квантовых точек с лигандами FA в зоне проводимости в целом выше. Разница в плотности состояний может оказывать влияние на оптические свойства квантовых точек, что подтверждается данными об оптическом поглощении (рис.2 и рис.4). Коэффициент оптического поглощения квантовых точек с лигандом С1 также имеет изолированный пик около 1,5 эВ (выделен красным пунктиром на рис.4), но этот пик не наблюдается в данных для квантовых точек с

лигандом FA. Оптический коэффициент квантовых точек с лигандом FA имеет более высокое значение около 1,75 эВ, чем у квантовых точек с лигандом Cl. Разницу можно объяснить, сравнив орбитальные проекции плотности состояний (рис.5 и рис.6). Спектр 2р-орбиталей квантовых точек

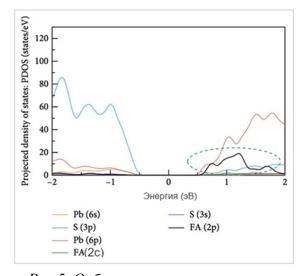


Рис.5. Орбитально-спроецированная плотность состояний для квантовых точек PbS с лигандами FA. Эффект гибридизации р-орбитальной плотности состояний (чёрная сплошная линия) в зоне проводимости выделен зелёным пунктиром

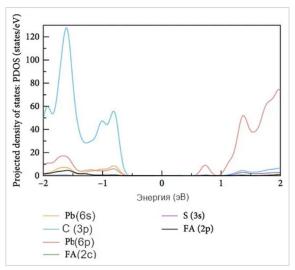


Рис. б. Орбитально-спроецированная плотность состояний квантовых точек с СІ-лигандами. Плотность состояний рорбиталей (чёрная сплошная линия) не показывает эффекта гибридизации в зоне проводимости.

с лигандом FA имеет один дополнительный пик в диапазоне энергий 0,6–2,0 эВ в зоне проводимости, в то время как для лиганда Cl такой пик отсутствует. Гибридизация с 2р-орбиталью может быть причиной отсутствия промежуточной зоны для квантовых точек с лигандом FA.

В данном исследовании были проанализированы результаты расчетов плотности состояний и профиля оптического поглощения квантовых точек PbS с лигандами Cl и FA после того, как ранее для структуры полос массива квантовых точек с лигандами FA было обнаружено отсутствие признаков формирования промежуточной полосы.

Разница в плотности состояний может оказывать влияние на оптические свойства квантовых точек, что подтверждается данными об оптическом поглощении. Гибридизация с 2р-орбиталью может быть причиной отсутствия промежуточной зоны для квантовых точек с лигандом FA. Квантовые точки PbS с лигандом FA показали более высокие коэффициенты оптического поглощения из-за устранения промежуточных уровней или полосы, что в свою очередь может указывать на возможное различие в транспортных свойствах PbS с лигандами Cl и FA.

Для проверки, выдвинутой выше гипотезы, предлагается провести моделирование и сравнение подвижности массивов квантовых точек PbS с

лигандами Cl и FA для широкого диапазона температур. Данная работа в перспективе может помочь выявить новый тип повышения подвижности, возникающий из-за перекрытия орбит, что может предоставить важную информацию для дальнейшего усовершенствования термоэлектрических устройств.

- [1] C.Gayner, K.K. Kar, Prog. Mater. Sci. V.83, 330 (2016).
- [2] Н.В.Ермилов, Н.Н.Биккулова, А.Р.Курбангулов, Г.Р.Акманова, И.М. Мунасыпов, Инженерная физика **2**, 3 (2025).
- [3] P.Hohenberg, W.Kohn, Phys. Rev. 136, B864 (1964).
- [4] J. C.Reinstra-Kiracofe, G. S.Tschumper, G. F. Schaefer, S.Nandi, G.B. Ellison, Chem. Rev. **102**, 231 (2002).
- [5] A.Pimachev, Y.Dahnovsky, J. of Phys. Chem. C. 119, 16941 (2015).

Секция Б3

Топологические материалы, магнитотранспорт и спинтроника

Хиральный магнетизм в монослоях дихалькогенидов переходных металлов

Манцевич В.Н.^{1,2}, Смирнов Д.С.², Кривенко И.С.³

¹ МГУ имени М.В. Ломономова, Москва, Россия
e-mail: vmantsev@gmail.com

² ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
e-mail: smirnov@mail.ioffe.ru

³ Технический университет Гамбурга, Гамбург, Германия
e-mail: igor.krivenko@proton.me

Ван-дер-ваальсовы гетероструктуры обладают исключительной способностью к настройке транспортных и оптических свойств, что привело к активным фундаментальным исследованиям этого класса материалов в последние годы и открыло возможности для их применения в современных устройствах наноэлектроники. Серьезным прорывом в этой области стало комбинирование двумерных полупроводников, таких как графен или дихалькогениды переходных металлов, с магнитными материалами [1]. Наиболее перспективными низкоразмерными магнитными материалами являются тригалогениды хрома и CrSBr, интенсивные исследования которых уже выявили множество новых физических явлений, поэтому исследование новых систем на основе этих материалов выглядит очень привлекательно.

В работе теоретически исследована система магнитных примесей, расположенных на поверхности монослоя дихалькогенида переходного металла. Разработана теория взаимодействия РККИ в этом материале, учитывающая блокировку спиновых долин в зоне проводимости и обменное взаимодействие магнитных примесей с d0-орбиталями атомов переходных металлов, которые формируют блоховские состояния зоны проводимости. Показано, что наличие двух минимумов в зоне проводимости в сочетании с отсутствием инверсионной симметрии и блокировкой спиновой долины приводит к киральному взаимодействию РККИ, которое способствует вращению магнитных моментов в плоскости с периодом, равным трем постоянным решетки. Вместе с антиферромагнитным взаимодействием ближайших соседей-антиферромагнитных частиц, это приводит к 120° неелевскому основному состоянию.

Магнитная термодинамика в этой системе может быть описана классической XY-моделью, в которрой есть два фазовых перехода: переход Березинского–Костерлица–Таулесса при спиновом упорядочении и переход хиральности по типу Изинга [2]. Для описания роли РККИ взаимодействия проведено моделирование методом Монте-Карло. Различные параметры порядка, восприимчивости и длины корреляций рассчитываются для широкого диапазона температур. В ходе моделирования, а также в рамках теории среднего поля продемонстрировано, что взаимодействие РККИ

разрушает фазовый переход, связанный с хиральностью, и приводит к одному знаку хиральности, зависящему от знака спинового расщепления зоны проводимости в монослое дихалькогенида переходного металла.

Обратное воздействие хирального магнетизма на оптические и транспортные свойства электронов в монослое дихалькогениад переходного металла описано на основе оригинальной k-р модели, полученной из модели сильной связи с шестью орбиталями. Показано, что из-за асимметрии системы "верх-низ" хиральная намагниченность в плоскости может аномальному антиферромагнитному эффекту Холла. приводить Хиральная намагниченность также изменяет оптические свойства монослоя дихалькогенида переходного металла, а именно, приводит к сворачиванию зоны Бриллюэна и обеспечивает междолинейное смешивание с переворотом спина. В результате основной экситонный резонанс в оптических спектрах расщепляется на несколько десятков миллиэлектронвольт, и возникает новый резонанс из-за усиления междолинных переходов.

Таким образом, предлагаемая гибридная система успешно сочетает транспортные и оптические свойства полупроводникового монослоя дихалькогенида переходного металла с хиральным магнетизмом и демонстрирует множество интересных свойств.

Работа выполнена при поддержке гранта РНФ № 25-12-00093.

- [1] K.S. Burch, D. Mandrus, and J.-G. Park, Nature 563, 47 (2018).
- [2] H. Kawamura, Can. J. Phys. 79, 1447 (2001).

Исследование фрустрированных спиновых систем: подход на основе функций Грина

Самигуллина А.И., Шарафуллин И.Ф., Юлдашева А.Р. Уфимский университет науки и технологий, Уфа, Россия e-mail: angelasamig2002@gmail.com

Изучение конкурирующих взаимодействий в спиновых системах является краеугольным камнем современной физики конденсированного состояния. Эта конкуренция, особенно проявляющаяся в виде фрустрации, радикально меняет поведение магнитных материалов. Вместо простого упорядочения спинов, фрустрация приводит к сложным, часто нетривиальным магнитным фазам.

Спиновые системы с фрустрациями демонстрируют поведение, качественно отличающееся от свойств их нефрустрированных аналогов, что делает их изучение особенно важным для понимания сложных магнитных явлений. Фрустрация в спиновых системах приводит к появлению новых фазовых состояний и аномальным термодинамическим свойствам. Это открывает новые горизонты для исследований, позволяя разрабатывать теоретические модели и экспериментальные методы для анализа таких систем. Понимание механизмов, лежащих в основе фрустрации, может привести к разработке материалов с уникальными магнитными свойствами, которые могут быть использованы в различных приложениях, от хранения данных до квантовых вычислений [1].

Несмотря на широкое применение модели Гейзенберга, её поведение при наличии конкурирующих обменных взаимодействий, создающих фрустрации, изучено недостаточно. Особенно сложной задачей является учет антиферромагнитного взаимодействия между вторыми ближайшими соседями. В классических моделях это приводит к вырождению основного состояния, делая анализ чрезвычайно трудоемким. Такое вырождение основного состояния открывает возможность для возникновения разнообразных, часто сложных, магнитных структур.

Для преодоления этих трудностей и более глубокого понимания физики подобных систем необходимо использовать подходы. В частности, разработка более эффективных алгоритмов моделирования, способных справляться вырождением c состояния и исследовать динамику сложных магнитных конфигураций. Перспективным направлением является развитие аналитических методов, таких как усовершенствованная теория возмущений или использование метода функций Грина, способного описывать нетривиальные спиновые возбуждения в этих фрустрированных системах [2].

В данной работе метод функции Грина применяется для определения энергетического спектра и магнитных свойств решетки скирмионов.

Модель основана на простой кубической решетке, где каждый узел магнитной пленки содержит спин Гейзенберга (S=1/2). Рассматривается сложная система, состоящая из двух магнитных и одной сегнетоэлектрической пленок, взаимодействие между которыми описывается полным гамильтонианом:

$$H = -J_{1} \sum_{i,j} \vec{S}_{i} \vec{S}_{j} - J_{2} \sum_{i,i'} \vec{S}_{i} \vec{S}_{i'} - \sum_{i,j} I_{i,j} S_{i}^{z} S_{j}^{z} - g \mu_{B} h \sum_{i} S_{i}^{z}$$
$$-J_{mf} \sum_{i,j} \left(S_{i}^{z} S_{j}^{z} \right) P_{i}^{z} - J_{f} \sum_{i,j} \vec{P}_{i} \vec{P}_{j} - J_{3} \sum_{i,i'} \vec{S}_{i} \cdot \vec{S}_{i'}$$
(1)

где первое слагаемое в гамильтониане описывает ферромагнитное взаимодействие $(J_1>0)$ между ближайшими соседними спинами \vec{S}_i и \vec{S}_i (NN), второе слагаемое – антиферромагнитное взаимодействие ($J_2 < 0$) между следующими ближайшими соседними спинами (NNN), третье слагаемое - анизотропное взаимодействие, четвёртое слагаемое взаимодействие со внешним магнитным поле величиной h, пятое слагаемое взаимодействие магнитоэлектрическое между магнитной сегнетоэлектричсекой пленки, шестое слагаемое гамильтониан сегнетоэлектрической системы, антиферромагнитное седьмое межслойное взаимодействие между магнитными пленками ($J_3 < 0$).

Данная модель позволяет учитывать взаимодействия между спинами, а также влияние сегнетоэлектрических свойств на магнитные характеристики системы. Важно отметить, что наличие сегнетоэлектрической решетки приводит к появлению дополнительных эффектов, таких как электромагнитные взаимодействия, которые существенно изменяют стабильность и динамику скирмионов на магнитной пленке.

Для вычисления спектра элементарных возбуждений используется метод двух временных запаздывающих функций Грина [2], ниже представлен спектр модели при разных значениях межслойного взаимодействия с параметрами: $J_1=1, J_2=-0.4, J_3=1.25, \langle S^z\rangle=0.5, I=0.1.$

При увеличении внешнего наблюдается магнитного поля трансформация зависимости исследуемой величины: простых параболических форм до более сложных, с характерными локальными экстремумами (минимумами максимумами). И Усиление магнитоэлектрического взаимодействия придает этой зависимости синусоидальный вид. Параллельно с ростом напряженности магнитного поля h, происходит увеличение энергетической щели при $k_z = 0$, что соответствует повышению минимальной энергии спиновой волны.

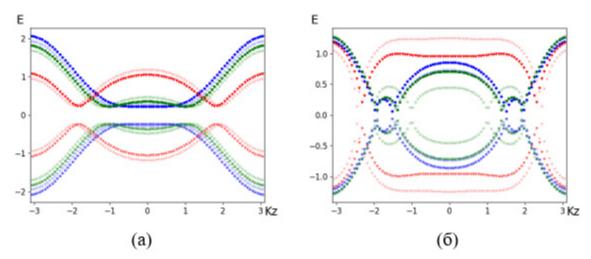


Рис.1 Зависимость энергии от волнового вектора k_z в случае $J_1=1, J_2=-0.4, J_3=1.25, \langle S^z\rangle=0.5, I=0.1$, где синий цвет - h=0, зеленый - h=0.25, красный - h=1: а) $J_{mf}=0.11$ ($\theta=30^\circ$), б) $J_{mf}=1.25$ ($\theta=72^\circ$).

Изменения в магнитоэлектрическом взаимодействии оказывают существенное влияние на энергетический спектр, приводя к формированию новых энергетических уровней и перераспределению интенсивностей пиков. Энергетические ямы, наблюдаемые на графике, соответствуют энергиям минимальных состояний системы, в которых достигается максимальная стабильность конфигурации. Важно отметить, что при угле $\theta = 72^{\circ}$ ($J_{mf} = 1.25$) энергетическая яма возникает только при наличии внешнего магнитного поля.

Работа выполнена в рамках государственного задания соглашение № 075-03-2024-123/1 от 15.02.2024 тема № 324-21.

- [1] S.E.Hog, I.F.Sharafullin, H.T. Diep, H.Garbouj, M.Debbichi, M.Said, J. of Magnetism and Magnetic Materials. V **563**, 169920 (2022).
- [2] Н.Н.Боголюбов Собрание научных трудов: в 12 т. Статистическая механика т. 6. Равновесная статистическая механика, Наука, Москва (2006).

Нелинейная связанная динамика и изменение структуры магнитных вихрей в спин-трансферных наноосцилляторах

<u>Екомасов Е.Г.</u>, Кабанов Д.К., Фасхутдинов Р.А., Кудашев В.С. Уфимский университет науки и технологий, Уфа, Россия e-mail: ekomasovEG@gmail.com

Одним из перспективных мультислойных технических устройств спинтроники, является микроволновой спин-трансферный наноосциллятор (СТНО) [1]. Наиболее исследован случай трехслойных наностолбиков, которые имеют два пермаллоевых магнитных слоя различной толщины, разделенных немагнитной прослойкой. В магнитных слоях (при их определенных размерах) может существовать, как основное состояние, магнитный вихрь. Исследуются случаи вихревых СТНО, когда вихрь существует в одном или двух магнитных слоев (см., например, [1]). Показано экспериментально и теоретически, что динамика вихрей для двухвихревого СТНО, может кардинально измениться по сравнению со случаем одновихревым СТНО [1,2].

Для случая двух вихревого СТНО малого диаметра построена диаграмма зависимости от величины спин поляризованного тока частоты и радиуса стационарных связанных колебаний магнитных вихрей как одинаковой, так и различной полярности. Используя эффективные уравнения связанной динамики для центров вихрей, найдены частоты для стационарного режима колебаний структуры с тремя и четырьмя магнитными слоями. Численно с помощью пакета SPIN PM описаны вихрей, траектории движения построены зависимости частоты стационарного режима связанных колебаний вихрей одинаковой полярности от величины тока. Показано, что частота линейно зависит от величины тока. Найдено, что численный эксперимент, в отличие от теоретического результата, показал уменьшение частоты стационарного режима колебаний вихрей для случая трех магнитных слоев по сравнению со случаем СТНО с двумя магнитными слоями.

Рассмотрено влияние изменения толщины немагнитной и магнитной прослойки на связанную динамику двух вихрей одинаковой полярности на примере СТНО малого и среднего диаметра. Найдены условия для получения в таких системах максимальной частоты и увеличения диапазона токов, при котором наблюдается стационарный режим связанных колебаний вихрей. Также исследован процесс переключения полярности магнитных вихрей при совместном воздействии спин-поляризованного тока и внешнего магнитного поля для случая двух вихревого СТНО большого диаметра. Построена диаграмма зависимости OT величины спин поляризованного величины поля, тока магнитного переключающего полярность вихря в магнитных слоях. Показано, что для

раздельного переключения полярности вихрей в СТНО большого диаметра требуется использования меньшей величины магнитного поля по сравнению со случаями среднего и малого диаметров СТНО, что более выгодно с точки зрения практических приложений. Обнаружено, что при увеличении величины тока выше ранее изученного диапазона, существует новый стационарный режим стационарной динамики вихрей одинаковой полярности.

Работа выполнена в рамках государственного задания, соглашение №075-03-2024-123/1 от 15.02.2024, тема № 324-21.

- [1] Звездин К.А., Екомасов А.Е., ФММ 123, 3, 219 (2022).
- [2] Hanif A., Rahim A. A., Maab H. Vortex dynamics in a spin valve nanopillar having hybrid polarizer and magnetostatic coupling // Physica B: Condensed Matter, 2023. Vol. 668. P. 415203

Магнитные скирмионы: генерация и динамика

<u>Хизриев К.Ш.</u>¹, Тааев Т.А.¹, Антонов В.А.^{1,2}

¹Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия, ²Институт наукоемких технологий и передовых материалов, ДВФУ, Владивосток, о. Русский, Россия e-mail: kamal71@mail.ru

Магнитные скирмионы благодаря своим малым размерам (вплоть до нескольких нанометров), топологической защищенности и высокой подвижности под действием спин-поляризованного тока являются наиболее перспективными системами для создания сверхплотной магнитной памяти [1-4].

В настоящей работе мы представили модель магнитного бегового трека с дефектами структуры для создания стабильных скирмионов с помощью спин-поляризованного тока (Рис.1).

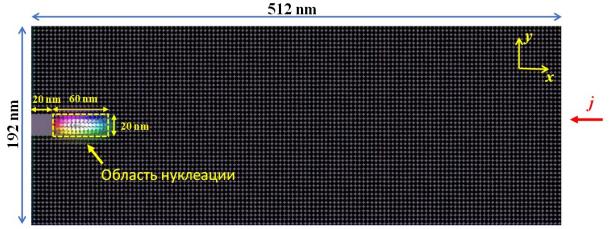


Рис. 1. Модель магнитного бегового трека с вырезом и областью нуклеации. j - плотность спин-поляризованного тока.

Нами был использован пакет микромагнитного моделирования MuMax3 для расчета динамики намагниченности с помощью уравнения Ландау-Лифшица-Гильберта[5]:

$$\frac{\partial \vec{m}}{\partial t} = \gamma \frac{1}{1+\alpha^2} \left(\vec{m} \times \vec{H}_{eff} + \alpha \left(\vec{m} \times (\vec{m} \times \vec{H}_{eff}) \right) \right) + \tau_{ZL} , \qquad (1)$$

где τ_{ZL} слагаемое, описывающее крутящий спиновый момент Жанга-Ли [6]:

$$\tau_{ZL} = \frac{b}{1+\alpha^2} \{ \vec{m} \times (\vec{m} \times (\vec{j} \cdot \nabla)\vec{m}) + (\beta - \alpha)(\vec{m} \times (\vec{j} \cdot \nabla)\vec{m}) \}, \qquad (2)$$

где γ — гиромагнитное соотношение, α — коэффициент затухания, m — нормированная намагниченность, H_{eff} — эффективное поле, j — плотность тока, β — неадиабатический фактор, $b = P\mu_B/eM_s(1+\beta^2)$, P — поляризация тока, μ_B — магнетон Бора, e — заряд электрона.

Эффективное поле H_{eff} определяется производной свободной энергии E по намагниченности:

$$\vec{H}_{eff} = -\frac{1}{\mu_0 M_s} \frac{\delta E}{\delta \vec{m}}.$$
 (3)

В нашем случае свободная энергия E:

$$E = E_{exch} + E_{anis} + E_{demag} + E_{ext} + E_{DMI}, \qquad (4)$$

где E_{exch} , E_{anis} , E_{DMI} , E_{demag} , E_{ext} вклад в энергию системы обменного взаимодействия, анизотропии, взаимодействия Дзялошинского-Мории, энергия размагничивающего поля, а также вклад от внешнего магнитного поля соответственно.

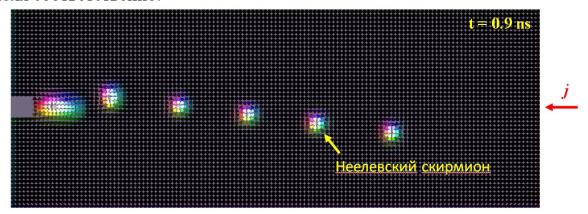


Рис. 2. Генерация неелевских скирмионов под действием спин-поляризованного тока приложенного плоскости магнитного трека.

Плотность спин-поляризованного тока $j = 10 \times 10^{12} \,\text{A/m}^2$.

Нами были получены условия зарождения магнитных скирмионов при наличии и отсутствии прямоугольного выреза, а также величины спин-поляризованного тока. Определены оптимальные размеры области нуклеации для зарождения скирмионов. Наличие последовательных дефекта и изотропной области нуклеации положительно влияет на образование скирмионов. Контролируя величину спин-поляризованного тока (управляя амплитудой плотности тока и временем импульса) удалось воспроизвести двоичную систему записи информации, в которой скирмион играл роль бита информации (Рис. 2).

Исследование выполнено при финансовой поддержке Российского научного фонда в рамках проекта № 25-22-20086 («Исследование моделей магнитных наносистем с топологически устойчивыми структурами с помощью микромагнитного моделирования»).

- [1] S.Muhlbauer, et al., Science **323**, 915 (2009).
- [2] C.Back, et al., J. Phys. D: Appl. Phys. **53**, 363001 (2020).
- [3] S.S.P.Parkin, et al., Science **329**, 190(2008).
- [4] P.F.Bessarab, et al., Computer Physics Comm. 196, 335 (2015).
- [5] A.Vansteenkiste, et al., AIP Advances 4, 107133 (2014).
- [6] R.M.Menezes, et al., Physical Review B. 99, 104409 (2019).

Artificial Intelligence Algorithms in the System of Optical Dimers

<u>Agalarov M.A.</u>¹, Magomedov A.M. ^{1,2}, Gadzhimirzaev R.M. ¹ Amirkhanov Institute of Physics, DFRC RAS, Makhachkala, Russia ²Dagestan State University, Makhachkala, Russia

A pair of bonded strands of light fiber with alternating regions of gain and loss at the nanoscale scale is called an optical dimer, and their cluster is called an oligomer. The mathematical model of light dimers is a discrete and/or continuous system of coupled nonlinear Schrödinger differential equations [1-3]. Multilayer structures and devices, such as multiplexers and switches of optical and/or electromagnetic signals (logical bits (solitons)), play a key role in the reliability and protection of transmitted information in fiber-optic communication line (FOCL) systems and computer equipment. These opto- and nanoelectronics devices perform the tasks of switching and blocking information, and also serve as logic gates with a switching energy of \sim 6 pJ and a frequency of \sim 0.2 THz with high functionality. Various binary structures that have two stable states, but with some perturbation (signal wave [1,2]) to change from one state to another, ... In this paper, a mathematical model of an optical dimer and artificial intelligence algorithms with controlled optical switching based on light and dark solitons (optical bits) of a matrix nonlinear Schrödinger system are proposed:

$$\left(\hat{L} + \sum_{j} a_{ij} \cdot |\Psi j|^{2}\right) \Psi_{i} = 0, i,j=1,2,...n$$

$$\hat{L} = i\partial_{\zeta} - \frac{1}{2} \partial_{\xi\xi}, i=\sqrt{-1}, (\xi,\zeta)=(x,t).$$
(1)

Here, the coefficients a_ij are constants of the nonlinear inter- ($i\neq j$) and selfaction (i=j) fields $\Psi_{_j}\in \mathbb{C}$. In the case of a two-component field (e.g., two laser beams with different amplitudes), $i,j=1,2.a11=\alpha$, $a22=\gamma$, and $a12=a21=\beta$, (α , β , $\gamma>0$). The case $\alpha=\pm\beta=\gamma$ corresponds to the U(2)- and U(1,1)- symmetry groups of the system (1) and are integrable in the MRL scheme (inverse scattering problem method) [1]. A non-trivial generalization of U(2) \rightarrow U(m) is given in [3], where a new class of mixed U(σ , μ)- vector solitons was found. Let's consider the case $\alpha\neq\beta\neq\gamma$ and, for convenience, rewrite the nonlinear system of differential equations (CDS) (1) in the form:

$$\hat{L}_1 \phi_1 = (\phi_1^2 + \beta \phi_2^2) \phi_1, \ L_1 = \frac{1}{2} \partial_{\xi\xi} + 1$$
 (2)

$$L_{\mu} \phi_{2} = (\beta \phi_{1}^{2} + \gamma \phi_{2}^{2}) \phi_{2}, \quad L_{\mu} = \frac{1}{2} \partial_{\xi \xi} + \mu$$
 (3)

where Ψ_1 =exp(i ζ) $\phi_1(\xi)$, Ψ_2 =exp(i $\mu\zeta$) $\phi_2(\xi)$, and by scaling the fields and variables, α =1 is taken. Individually, fields (components) ϕ_1 and ϕ_2 behave in a multilayer structure (in system (2,3)) at β =0 as dark solitons:

$$\phi_1 = \pm \tanh(\Delta \xi)$$
 (4)

$$\phi_2 = \pm \sqrt{\frac{\mu}{\gamma}} \tanh(\sqrt{\mu} \Delta \xi) \tag{5}$$

Solutions (4,5) are distinguishable in amplitude and have topological charges $Q_1 \neq Q_2 \neq 0$. Let us now $\gamma = \mu 2$ ($\mu > 0$), which does not destroy the environment and the statement of the problem, but leads to the dependence $\beta = \beta(\mu)$ and, consequently, to the only control parameter in the system (2). Now let's enable field interaction ($\beta \neq 0$) by controlling the μ parameter.

In the case of a coupling (modulation cross) $\beta = \mu(1+2\mu)$, the exact solutions of the system of differential equations (2,3) are obtained in the form:

$$\phi_1 = \pm \tanh(2\mu\Delta\xi)$$
 (6)

$$\phi_2 = \pm \sqrt{\mu^{-1} - 2} \operatorname{sech}(2\mu\Delta\xi) \tag{7}$$

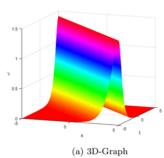


Fig. 1. Bright soliton

Here we can clearly see the production of a light soliton with Q_2 =0, for which the initially closed medium turns out to be transparent ("superconducting") due to a topological "breakdown" in the system. This interpretation follows from the analysis of the symmetry of the system (1,4) and solutions (5), where the discrete P-symmetry is spontaneously violated: $\phi_i = -\phi_j$. Due to cross-modulation ($\beta \neq 0$), the topological charge of the field ϕ_2 is "split" and the normal dispersion of the

medium for it turns out to be anomalous in the presence of the dark (topological) soliton φ_1 . Other things being the same, the problem, let $\beta=\mu+2$. Field configuration

$$\phi_1 = \pm \sqrt{1 - 2\mu} \operatorname{sech}(2\mu^{-1/2}\Delta\xi)$$
 (8)

$$\phi_2 = \pm \sqrt{\mu - 1} \tanh(2\mu^{-1/2}\Delta\xi) \tag{9}$$

are now another precise solution of the CDS (2). Solutions (6-7) and (8-9) demonstrate a Ib> \Leftrightarrow Id> (bright \Leftrightarrow dark) soliton conversion effect similar to that of a quantum conversion of particles (boson) \Leftrightarrow fermion in a QTP. [1]. The physics of decisions (7,8) is the same as decisions (5,6). These unusual scenarios of "switching" solitons (bits) $|\phi_1\rangle \Leftrightarrow |\phi_2\rangle$, controlled by a single parameter μ , can be used in AI algorithms and devices of a new generation based on optical dimers and

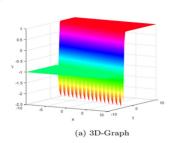


Fig. 2. Dark soliton

fiber-optic communication lines and nanofotonic computing technology.

Thus, the obtained exact solutions (solitons) can be used in the creation of new artificial intelligence algorithms and nanophotonics devices.

- [1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevsky, Theory of solitons, Moscow, Nauka 1980
- [2] M. Hasegawa and Y. Kodama, Solitons in Opt. Comm, Oxford, 2015
- [3] A. M. Agalarov, R. M. Magomedmirzaev, "Nontrivial class of composite U(σ+μ) vector solitons"; JETP Letters, 76:7 (2002), 414–418
- [4] Magomedov A.M., Agalarov M.A., Elements of Artificial Intelligence in the Structures of Optical Dimers. Materials X111 All-Russia. Conf. on Physical Electronics, FE-2024, DSU, P.67-69, Makhachkala, 2024.

Движение скирмиона в переменном магнитном поле

Толкачев В.А., Бычков И.В., Кузьмин Д.А.

Челябинский Государственный Университет, Челябинск, Россия e-mail: tolkachev.v.a@csu.ru

Скирмионы представляют собой устойчивые магнитные конфигурации, которые могут быть управляемы внешними полями. В частности, переменное магнитное поле может вызвать динамические изменения в структуре скирмиона, такие как его перемещение или изменение формы. Это открывает возможности для создания новых типов магнитных устройств, в которых скирмионы могут быть использованы в качестве носителей информации или элементов магнитной памяти нового поколения [1]. Исследования показали, что внешнее магнитное поле может существенно влиять на стабильность и динамику скирмионов, что подтверждает актуальность их изучения в переменном магнитном поле [2].

Формирование скирмионов в магнитных системах обусловлено балансом различных магнитных взаимодействий, таких как обменное, анизотропное и Дзялошинского-Мория. Взаимодействие Дзялошинского-Мория, возникающее из-за нарушения инверсионной симметрии в кристаллической решетке, играет ключевую роль в стабилизации скирмионов. В результате скирмионы могут существовать в различных материалах, таких как фрустрированные магнетики, гетероструктуры и ультратонкие пленки.

В работе исследуется движение скирмионов на границе раздела между магнитным и немагнитным металлами в переменном магнитном поле.

Полная магнитная энергия может быть выражена следующим образом:

$$F = \int_{V} \left\{ A(\nabla m)^{2} + \varepsilon - \mu_{0} \mathbf{M} \cdot \mathbf{H}_{\text{ext}} - \frac{\mu_{0}}{2} \mathbf{M} \cdot \mathbf{H}_{\text{demag}} \right\} d^{3}r.$$
 (1)

где A - константа неоднородного обмена, ε - плотность энергии взаимодействия Дзялошинского-Мория, $\mathbf{H}_{\mathrm{ext}}$ - внешнее магнитное поле, $\mathbf{H}_{\mathrm{demag}}$ - размагничивающее поле.

Энергии взаимодействия Дзялошинского-Мория на границе раздела брали в виде:

$$\varepsilon = D[m_z(\nabla \cdot \mathbf{m}) - (\mathbf{m} \cdot \nabla)m_z]$$
 (2)

где D - константа, характеризующая силу взаимодействия Дзялошинского-Мория. Она зависит от свойств материала и направления спин-орбитального взаимодействия, \mathbf{m} - единичный вектор, указывающий направление локальной намагниченности.

Динамика магнитных текстур, включая скирмионы, может быть описана уравнениями Ландау-Лившица-Гильберта (ЛЛГ). Это уравнение является обобщением уравнения Ландау-Лившица с учетом диссипативных эффектов и спин-торка τ_{STT} :

$$\frac{d\mathbf{m}}{dt} = -\gamma \mathbf{m} \times \mathbf{H}_{\text{eff}} + \alpha \mathbf{m} \times \frac{d\mathbf{m}}{dt} + \mathbf{\tau}_{\text{STT}}$$
 (3)

где γ - гиромагнитное отношение, $\mathbf{H}_{\mathrm{eff}} = -(1/\mu_0 M_s)(\delta F/\delta \mathbf{m})$ - эффективное магнитное поле, α - параметр диссипации, τ_{STT} - спин-торк, который возникает из-за передачи спинового углового момента от проводящих электронов к намагниченности возьмем из [3]:

$$\mathbf{\tau}_{\mathrm{STT}} = \beta u \left(\mathbf{m} \times \frac{\partial \mathbf{m}}{\partial x} \right), \tag{4}$$

1 GHz 2*Pi GHz

11 GHz

где $u = \gamma \left(\hbar j P / 2 e M_s \right), \ M_s$ - намагниченность насыщения, j - плотность тока, P - спиновая поляризация, а β - фактор неадиабатичности.

Расчеты проводились для границы раздела Co/Pt. Скирмион двигался под действием спин-поляризованного тока направленного вдоль оси х ($j=-10^{12}$) и внешнего магнитного поля вдоль оси у: $H_{\rm ext}(t)=H_0\sin(\omega t)$, где H_0 изменялось от 0 до 100 мТл, а ω от 1 до 11 ГГц. Постоянные брались $D=3.5~{\rm MДж/M^2},~M_{\rm S}=580~{\rm kA/m}.$

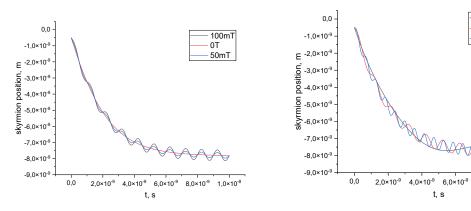


Рис.1 Перемещение скирмиона в пластине. Слева при угловой частоте $\omega = 2\pi$ $\Gamma \Gamma \mu$ в зависимости от внешнего магнитного поля. Справа при амплитуде внешнего магнитного поля 100м Γ в зависимости от угловой частоты ω (1, 2π и 11 $\Gamma \Gamma \mu$).

Из графиков видно, что во внешнем магнитном поле скирмион начинает периодически двигаться вдоль оси у, с увеличением амплитуды внешнего магнитного поля H_0 амплитуда смещения скирмиона вдоль оси у возрастает. Это свидетельствует о том, что более сильное поле усиливает воздействие на скирмион, способствуя его направленному движению. Увеличение частоты способствует более частому перемещению скирмиона вдоль приложенного поля. Исследованные эффекты возможно применить в датчиках магнитного поля и устройствах передачи и хранения информации.

- [1] З.В.Гареева, К.Ю.Гуслиенко, ФТТ 60, 1135 (2018).
- [2] И.Ф.Шарафуллин, Х.Т.Дьеп, ПЖЭТФ 114, 610 (2021).
- [3] J.Sampaio et al., Nature nanotechnology 8, 839 (2013).

Термоэлектрические свойства объемного композита на основе теллурида висмута и ферромагнитного наполнителя.

Батдалов А.Б.¹, Мухучев А.А.¹, Ховайло А.В.²

¹ Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия ab.batdalov@gmail.com

² Национальный исследовательский технологический университет «МИСИС», Москва, Россия

Эффективность термоэлектрического устройства связана с термоэлектрической добротностью ZT, которая имеет следующий вид: $ZT = (\sigma S^2/K_e + K_{ph}) \cdot T, \, \Gamma de$

 σ - электропроводность, S-коэффициент Зеебека или термоэдс, K_e и K_{ph} – электронная и фононная составляющие теплопроводности соответственно, T-температура.

Произведение σS^2 иногда называют фактором мощности. Из выражения ZT следует, что эффективность термоэлектрика может быть увеличена как за счет повышения фактора мощности σS^2 , так и путем уменьшения теплопроводности, а лучше, если оба эти процесса происходят одновременно.

Несмотря на то, что все параметры, характеризующие термоэлектрическую добротность: теплопроводность, электропроводность, термоэдс зависят от магнитного поля, работ, посвященных исследованию влияния магнитного поля на ZT термоэлектриков нам не удалось найти.

В данном сообщении приводятся результаты исследования влияния магнитного поля до 80 кЭ на термоэлектрическую добротность нанокомпозита на основе теллурида висмута с магнитоупорядоченными включениями, в качестве которых были взяты частицы никеля (один весовой процент).

Для измерения исследуемых коэффициентов использовались стандартные методики. Основные результаты сводятся к следующему: Электросопротивление проявляет положительный магниторезистивный эффект во всем исследованном интервале температур- 77-350 К.

Термоэдс растет с температурой и немного уменьшается под влиянием магнитного поля, т.е. эффект отрицательный.

Теплопроводность слабо зависит от температуры и убывает с ростом поля, что связывается с эффектом Маджи-Риги-Ледюка.

Итоговый результат по исследованию влияния магнитного поля на ZT композита $Bi_2Te_3+1\%$ Ni заключается в уменьшении термоэлектрической добротности, что связывается ч уменьшением фактора мощности σS^2 .

Обсуждаются возможные причины наблюдаемого поведения ZT=f(H,T)

Исследования выполнены за счет гранта РНФ, №25-29-00410

Особенности стабилизации и свойства магнитных скирмионов в наномодифицированных ферромагнитных плёнках

Bахитов P.M., <u>Филиппов М.А.</u>, Хакимуллина А.А. Уфимский университет науки и технологий, Уфа, Россия e-mail: mikhail.filippov.99@mail.ru

Магнитные собой скирмионы представляют топологически защищенные вихреподобные структуры, устойчивость которых связана с асимметрией в распределении спинов. Они обладают уникальными свойствами: наномасштабные простота физическими размеры, манипулирования с помощью электрического тока малой плотности и другие необычные спин – электронные свойства. Благодаря этому скирмионы являются потенциальными кандидатами для использования в новом поколении устройств памяти. [1].

Для стабилизации скирмионов в большинстве случаев требуется наличие взаимодействия Дзялошинского-Мория (DMI), что ограничивает выбор возможных материалов и повышает стоимость потенциальных устройств. Однако существуют альтернативные способы, позволяющие получить устойчивые их структуры при слабом DMI или даже в его отсутствии. Например, используя наномодифицированые плёнки с пространственно модулированными параметрами [2, 3, 4].

Целью данной работы является изучение совместного влияния двух стабилизирующих факторов для скирмионов: DMI и наличие дефекта типа «потенциальная яма». Исследование проводилось микромагнитного моделирования в пакете программ OOMMF [4]. В качестве расчётной модели рассматривалась плёнка в форме диска с радиусом R = 75 и 150 нм и толщиной h = 1 нм. Анализ результатов показывает, что на колумнарном дефекте с радиусом $R_0 = 30$ нм происходит уменьшение величины перпендикулярной анизотропии K_{u2} по сравнению магнитной анизотропией в остальном диске K_{u1} . При моделировании учитывалось обменное взаимодействие (A = 1.5 · 10^{-11} Дж/м), DMI ($D=1\cdot 10^{-3}$ Дж/м²), магнитная анизотропия ($K_{u1}=$ 0.4 и $0.6 \cdot 10^6$ Дж/м 3 , $K_{u2} = (0 \div K_{u1}))$ И магнитостатическое взаимодействие ($M_s = 5.8 \cdot 10^5 \text{A/m}$). Данные материальные параметры соответствуют многослойным плёнкам типа Co/Pt.

В итоге наблюдалось положительное влияние дефекта на стабилизацию магнитных скирмионов. При данных параметрах в отсутствии дефекта скирмионы не образуются, диск остаётся однородно намагниченным. Но при внедрении дефекта эти магнитные структуры становятся стабильными при определённой глубине потенциальной ямы, характеризуемой параметром K_{u2} : $K_{u2} = 0.25 \cdot 10^6$ при $K_{u1} = 0.4 \cdot 10^6$ Дж/м 3 и $K_{u2} = 0.1 \cdot 10^6$ Дж/м 3 при $K_{u1} = 0.6 \cdot 10^6$ Дж/м 3 . Эти пороговые

значения не зависят от размеров диска. При этом с уменьшением K_{u2} происходит увеличение радиуса скирмионов (Puc.1).

анализировалась Также энергия диска при данных параметрах в зависимости от изменения (Рис.2). По нему видно, что характер зависит изменения энергии величины При $K_{u1} = 0.4$. K_{u1} . $10^6 \, \text{Дж/м}^3$ точке появления скирмиона происходит небольшой скачок энергии, затем общая энергия уменьшается. При $K_{v1} = 0.6 \cdot 10^6 \, \text{Дж/}$ м³ в точке появления скирмионов сразу начинается плавное уменьшение общей энергии. И, начиная с $K_{u2} =$ $0.1 \cdot 10^6$ Дж/м³, скирмион на дефекте становится энергетически выгоднее, чем однородное состояние.

В итоге, результаты моделирования показали, что при наличии дефекта типа «потенциальная яма» возможна стабилизация магнитных скирмионов неелевского

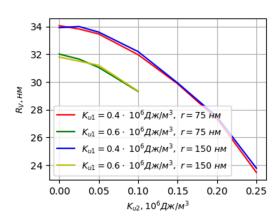


Рис. 1 График зависимости радиуса скирмионов R_V от K_{u2} .

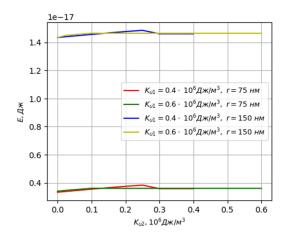


Рис.2 График зависимости общей энергии диска в зависимости от K_{u2} .

типа. При этом дефект даёт возможность понизить необходимую для появления скирмионов величину DMI. Кроме того проанализировано влияние характеристик дефекта (R_0, K_{u2}) на размеры скирмиона и его энергию. Данные исследования комбинирования дефектов с управляемой анизотропией И DMI могут открыть новые возможности ДЛЯ проектирования функциональных материалов, применяемых скирмионике.

Работа выполнена в рамках государственного задания на выполнение научных исследований лабораториями (№ 075-03-2024-123/1 от 15.02.2024).

- [1] K.K. Mishra, A.H. Lone, S. Srinivasan, H. Fariborzi, G. Setti, Magnetic skyrmion: from fundamental physics to pioneering applications, Appl. Phys. Rev., 12(1), 011315 (2025).
- [2] M.V. Sapozhnikov et al., Appl. Phys. Lett. 109(4), 042406 (2016).
- [3] R.M. Vakhitov, R.V. Solonetsky, A.A. Akhmetova, M.A. Filippov, Symmetry 14(3), 612 (2022).
- [4] R.M. Vakhitov, A.A. Akhmetova, M.A. Filippov, JPCM. 37, 5 (2024).
- [5] M.J. Donahue, D.G. Porter OOMMF User's Guide, Version 1.0 Interagency Report National Institute of Standards and Technology, Gaithersburg, MD (1999).

Магнитные kπ-скирмионы на дефектах типа «потенциальная яма» в одноосных ферромагнитных пленках

Ильясова Г.Ф., Вахитов Р.М.

Уфимский университет науки и технологий, Уфа, Россия e-mail: galiya.siraeva2014@yandex.ru

Как известно, в магнитоупорядоченнных средах существуют различные взаимодействия между магнитными моментами: обменное взаимодействие, магнитостатическое взаимодействие, магнитоупругое взаимодействие, анизотропное взаимодействие, обусловленное в том числе Дзялошинского (спин-орбитальное взаимодействием Мория взаимодействий взаимодействие). Конкуренция приводит ЭТИХ возникновению разнообразных стабильных неоднородных спиновых структур. Одним из таких образований является магнитный скирмион – локализованная спиновая структура с топологическим зарядом. В последнее время, после обнаружения существования магнитных скирмионов в пленках MnSi, значительно возросли масштабы исследований их свойств, влияния на них различных факторов, магнитных материалов, в которых они стабилизируются, и т.д. [1]. Такой интерес вызван топологической защищенностью, высокой подвижностью, необычными спин-электронными свойствами, что делает их перспективными при разработки различных устройств спинтроники, а также в искусственных нейронных сетях. Большая часть исследований, касающихся магнитных скирмионов, велась в киральных магнетиках. Однако из-за наличия в них взаимодействия Дзялошинского-Мория (ВДМ), устойчивость скирмионных состояний в нецентросимметричных кристаллах достигалась лишь при пониженных температурах, что соответствует для объёмных ВДМ. Также было обнаружено, что магнитные скирмионы в ультратонких многослойных пленках стабилизируются уже при комнатной температуре, в данных пленках имеет место уже межфазное ВДМ. Однако и в этом случае возникают некоторые сложности со стабилизацией магнитных скирмионов в пленках с малой толщиной (D~1 нм), связанные со сложностью контроля параметров взаимодействий (взаимодействие Дзялошинского - Мория, одноосная анизотропия, обменное взаимодействие, размагничивающие поля) ответственных за их стабилизацию. Кроме того, для устойчивости таких скирмионов необходимы большие поля, (Н≥ 10 мТ). Поэтому возник новый тренд по поиску некиральных магнитных материалов (отсутствует ВДМ), в которых могут возникнуть устойчивые состояния скирмионов. На сегодняшний день известно несколько способов получения устойчивых скирмионов в некиральных магнетиках [2]. В основе одного из такого метода лежит искусственное создание модифицированных пленок, в которых путем облучения их поверхности локализованным пучком ионов Не⁺ формируется решетка «потенциальных ям» [3]. На них и стабилизируются магнитные скирмионы. Как показали расчеты [4], магнитные скирмионы, образующиеся в магнитоодноосных пленках на колумнарных дефектах типа «потенциальная яма», являются устойчивыми образованиями в широких интервалах изменения материальных параметров и характеристик дефекта.

большинстве работ под термином «магнитный понималась вихреподобная неоднородность, в которой единичный вектор намагниченности m = m(r) изменяет свое направление на 180 при перемещении в радиальном направлении от центра (r=0) до периферии $(r=\infty)$ пленки (л-скирмион). В то же время, задолго до обнаружения магнитных скирмионов, в работе [5] теоретически было предсказано, что в одноосных ферромагнитных пленках с ВДМ, возможно существование скирмионов с более сложной структурой, так называемые $k\pi$ -скирмионы ($k \in \{1, 2, 3...\}$), в которых «закрутка» вектора m происходит на угол, кратный 180°. В последствие скирмионы такого типа были обнаружены в работе [6], в результате были выявлены в них устойчивые состояния $2\pi,3\pi$ и 4π скирмионов при комнатной температуре (Т=300 К). Экспериментальные реализации kπ-скирмионов (k> 1) вызывают определенные сложности из-за специфических условий их устойчивости. Они заявлены лишь в двух работах [7], что, по-видимому, связано с определенными трудностями их нахождения. Вследствие мало изученности кл-скирмионов в некиральных магнетиках, а именно их свойств, влияния на них различных факторов, магнитных материалов и условий, в которых они стабилизируются, данная область представляет большой интерес для их изучения.

В данной работе изучаются устойчивые состояния магнитных $k\pi$ -скирмионов, образующихся на колумнарных дефектах типа «потенциальная яма» в одноосных ферромагнитных пленках. Исследование возможных типов магнитных скирмионов, структура и их устойчивость в таком магнетике проводилось методом микромагнитного моделирования в пакете программ открытого доступа OOMMF.

В качестве модели дефекта рассматривается структурная неоднородность магнетика, в которой материальные параметры $P = \{A, K_u, \}$, изменяются скачком в области дефекта:

$$P = \begin{cases} P_1, r > R_0 \\ P_2, r \le R_0 \end{cases}$$

где P_i = $\{A_i, K_{ui}, M_{si}\}$ — материальные параметры вне колумнарного дефекта (i=1) и в области дефекта (i=2). Здесь А-обменный параметр, K_u , - константа одноосной анизотропии, M_s -намагниченность насыщения.

В результате моделирования были выявлены устойчивые $k\pi$ -скирмионы ($k=1,\,2,\,3,\,4,\,5,\,6,\,7$). Магнитные $k\pi$ -скирмионы стабильны при следующих соотношениях материальных параметров $K_{u2}=0,\,A_2=0,5A_1,\,M_{s2}=M_{s1}$. Кроме того, была получена зависимость влияния радиуса образца на

величину «закрутки» k. Число колец, в которых намагниченность изменяет свое направление на 180° при перемещении в радиальном направлении от центра (r=0) до периферии ($r=\infty$) пленки, равно порядку скирмиона k.

На рис.1 представлены стабильные $k\pi$ -скирмионы (k=5,6,7), при диаметре образцов равным 1150 нм, 1350 нм и 1600 нм соответственно.

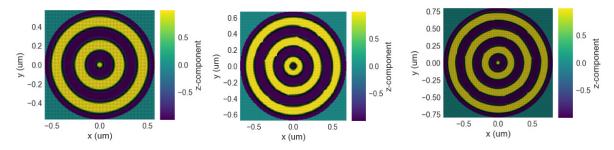


Рис. 1. Топологическая спиновая текстура $k\pi$ -скирмионов (k = 5, 6, 7)

Авторы благодарят за финансовую поддержку Государственное задание Российской Федерации на проведение научных исследований лабораториями (Теория, моделирование и получение тонкоплёночных, наноструктуированных и гибридных структур (FRRR-2024-0001)))

- [1] Самардак А. С., Колесников А. Г., Давыденко А. В., Стеблий М. Е., Огнев А. В. Топологически нетривиальные спиновые текстуры тонких магнитных пленках // ФММ. − 2022. − Т. 123. − № 3. − С. 260-283.
- [2] Sapozhnikov M.V., Petrov Y.V., Gusev N.S., Temiryazev A.G., Ermolaeva O.L., Mironov V.L., Udalov O.G., Artificial Dense Lattices of Magnetic Skyrmions // Materials. 2020. 99. 6981357.
- [3] M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, Y. V. Petrov, Appl. Phys. Lett., **109**, 042406 606 (2016).
- [4] Р. М. Вахитов, А.А. Ахметова, Р.В. Солонецкий ФТТ 61, 453(2019)
- [5] A.Bogdanov, A.Hubert, J.Magn.Mater. 195,182 (1999)
- [6] J. Jiang, Y. Wu, L. Kong, Y. Wang, J. Li, Y. Xiong, J. Tang Acta Materialia, 215 (2021) 117084
- [7] S. Zhang, F. Kronast, G. Van der Laan, T. Hesjedal, Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure, Nano Lett. 18 (2018) 1057–1063

Электронные свойства двумерных "twist" систем графена и нитрида бора

Михайленко Е.К. 1,2 , Дунаевский С.М. 1,2 1 НИЦ КИ "ПИЯФ", Гатчина, Россия 2 СПбГЭТУ "ЛЭТИ", Гатчина, Россия e -mail: mikhailenko ek@pnpi.nrcki.ru

В настоящей работе анализируются электронные и фононные свойства двумерных структур, образованных двумя слоями графена (Gr), либо гексагонального нитрида бора (h-BN), либо сложением двух слоёв обозначенных структур.

Математическая задача построения ячеек двух, трёх и более слойных графеноподобных решёток, повёрнутых друг основе некоторый угол, нетривиальна и требует относительно друга на определённого подхода (обычно с использованием диофантовых уравнений). ограничились получением алгоритма, Мы численного позволяющего найти требуемую ячейку по заранее заданному углу.

Получить двуслойные "twist" ячейки довольно просто — необходимо либо сдвинуть одну ячейку относительно другой, либо произвести поворот. Ещё интереснее комбинировать эти два вида изменений. С физической точки зрения наиболее интересной является область углов поворота от 1 до 2 градусов — именно в этой области для двуслойного графена зарегистрирована высокотемпературная сверхпроводимость.

В настоящей работе проанализированы электронные и фононные свойства самых простых относительно взаимных сдвигов и поворотов двуслойных структур на основе Gr и h-BN. Для случаев, проверяемых данными современной литературы, характер изменения зонной структуры совпадает с известными данными. Выполнена оптимизация геометрии рассмотренных структур.

Данная работа является первой ступенью к исследованию более сложных "twist"-систем, образованных большим числом слоём и меньшим углом поворота.

- [1] Slawinska J. et al. Energy gap in graphene on hexagonal boron nitride bilayer system // PRB. 2010. V. 81. 155433
- [2] Syvain L. et al. Structural classification of boron nitride twisted bilayers and ab initio investigation of their stacking-dependent electronic structure // SciPost Physics. 2023. V. 14. P. 1–29.
- [3] Morell E.S. et al. Flat bands in slightly twisted bilayer graphene // PRB. 2010. V. 82. 121407

Проводимость, магнитосопротивление и магнитные свойства многонанослойных плёнок [(CoFeB) $_x$ (SiO $_2$) $_{1-x}$ /(ZnO)] $_{50}$ с в интервале температур 2-400 К и в магнитных полях 0–9 Тл

<u>Заговорич А.Д.</u>¹, Котов Л.Н.¹, Уткин А.А.¹, Ситников А.В.², Калинин Ю.Е.²

¹Сыктывкарский государственный университет, Сыктывкар, Россия e-mail: roderikfx@yandex.ru

В последние годы наблюдается устойчивый интерес к исследованию многослойных наноструктур на основе композитов металл-диэлектрик, таких как $[(CoFeB)_x(SiO2)_{1-x}/(ZnO)]_n$, которые уникальными магнитотранспортными свойствами, такими как гигантское магнитосопротивление, достигающее 8% при комнатной температуре [1], аномальный эффект Холла [2], высокие значения магниторефрактивного эффекта [3], а также наличие мемристивных свойств. Интерес вызывают композиции с ферромагнитными гранулами, которые проявляют сложное сочетание электрофизических и магнитных свойств. Изменяя содержание металлической фазы, толщину слоев и состав межфазных границ, можно существенно влиять на свойства материалов. Введение полупроводниковых прослоек, таких как ZnO, может кардинально менять транспортные свойства между композитными слоями. Особый интерес представляет исследование механизмов переноса заряда в условиях сильных магнитных полей до 9 Тл и в широком температурном интервале от 2 до 400 К до сих пор остаются до конца не выявленными. Целью данной работы является влияния толщины слоёв ZnOна проводимость исследование магнитосопротивление и магнитные свойства многонанослойных плёнок $[(CoFeB)x(SiO2)_{1-x}/(ZnO)]_{50}$ с варьируемой концентрацией металлической фазы в широком интервале температур 50-400 К и магнитных полей до 9 Тл.

Многонанослойные плёнки [(CoFeB)_x(SiO2)_{1-x}/(ZnO)]₅₀ были получены методом ионно-лучевого распыления на вакуумной установке УВН-2М в Воронежском государственном техническом университете (ВГТУ) [1,2]. Слои композита (CoFeB+SiO₂) и ZnO напылялись последовательно, толщина каждого слоя составляла 1—4 нм (Таблица 1), а общее количество бислоев составляло 50. Процесс проходил в среде инертного газа аргона (чистота 99.998%) при рабочем давлении 64 мПа. Напряжение на аноде ионного источника составляло 2.4 кВ, ток плазмы -90 мА, а ток компенсатора -4.2 А. Общая продолжительность процесса напыления составляла 500 минут.

Исследование морфологии и толщины слоев многослойных плёнок проводилось с помощью сканирующего электронного микроскопа TESCAN MIRA3. Образцы нарезаны штифтами, изображения получены с использованием детекторов вторичных электронов (SE), чувствительных к

²Воронежский государственный технический университет, Воронеж, Россия

топографии, и обратно-рассеянных электронов (BSE), обеспечивающих Zконтраст для различения слоев композита (CoFeB+SiO₂) и полупроводника анализировался ZnO. Состав пленок помощью приставки энергодисперсионного микроанализа. Толщины слоёв композита d_{κ} и элементный состав полупроводника d_Z и В атомных процентах многослойных плёнок были определены и сведены в Табл. 1.

Таблица 1. Параметры многослойных пленок $[(CoFeB)_x(SiO_2)_{1-x}/(ZnO)]_{50}$

№	d, _{HM}	d _Z , нм	d _к ,	х, ат. %	В	Co	Fe	O	Si	Zn
3	270	1.4	4.0	16.0	0.5	8.2	7.4	59.1	18.0	6.9
5	329	1.7	4.9	13.7	0.0	7.1	6.7	61.6	19.9	4.8
7	357	2.3	4.8	19.9	0.4	10.4	9.1	52.4	12.4	15.2
10	398	3.0	5.0	18.3	0.0	9.9	8.5	50.6	10.2	20.9
12	388	3.1	4.7	17.5	0.0	9.4	8.1	50.6	9.4	22.5
13	430	3.7	4.9	14.4	0.0	7.6	6.8	51.2	8.4	26.0

Концентрация композита CoFeB колеблется от 13.74 до 19.93 ат. %, а общая толщина пленок находилась в пределах от 269.5 до 430 нм. Следует отметить, что в образцах № 5, 10, 12 и 13 не был обнаружен бор, что свидетельствует о недостаточной чувствительности метода. Также наблюдается значительная вариация в содержании цинка от 4,77% до 26,01% что может указывать на различия в толщине и составе слоев ZnO от образца к образцу.

Исследования электрического сопротивления плёнок в интервале температур от 50 до 400 К и в магнитных полях от 0 до 9 Тл проводились в Центре диагностики функциональных материалов Научного парка СПбГУ. Изучение механизмов электропроводности и магнито-транспортных явлений осуществлялось на универсальном комплексе PPMS-9 + EverCool-II (Quantum Design). Сопротивление измерялось классическим четырехточечным методом для исключения влияния сопротивления контактов на СКВИД-магнитометре MPMS 3 SQUID (Quantum Design).

результате проведённых исследований было выявлено, что многослойные пленки $[(CoFeB)_x(SiO_2)_{1-x}/(ZnO)]_{50}$ по магнитным свойствам представляют собой магнитомягкие материалы c ферромагнитным упорядочением и температурой Кюри 470-480 К. Описание магнитных осложнены низкотемпературными существенно эффектами (блокировка при $T_B \approx 15$ K, необратимость ZFC-FC), указывающими на суперпарамагнитное или спин-стекольное поведение. Такое сочетание, вероятно, обусловлено неоднородностью магнитной структуры, возможным наличием магнитных нанокластеров в немагнитной или слабомагнитной матрице, а также присутствием конкурирующих ферро- и антиферромагнитных взаимодействий. Температурное поведение проводимости многослойных плёнок подтверждают полупроводниковый характер проводимости. Исследование магнитосопротивления, показанные на рис. 1, выявляет преимущественно отрицательные значения, величина которого зависит от температуры и магнитного поля, как правило, увеличиваясь с ростом поля до 1 Тл и достигая максимальных значений при Тл. Как рис.1, видно ИЗ явной зависимости магнитосопротивления от толщины слоёв ZnO, изменяющихся в интервале 1.4-3.7 не наблюдается. Поэтому требуются проведение дальнейших исследований с другими толщинами слоёв. Сложные магнитотранспортные наблюдающиеся явления, на температурных зависимостях магнитосопротивления, свидетельствуют комплексных механизмах рассеяния носителей заряда, которые на влияют, упорядочение, так и его неоднородности, так и внешние условия.

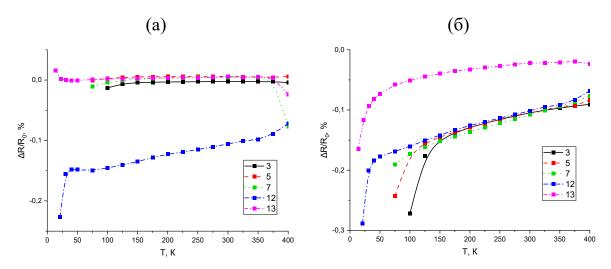


Рис. 1. Температурные зависимости магнитосопротивления плёнок $[(CoFeB)_x(SiO_2)_{1-x}/(ZnO)]_{50}$ в магнитных полях с индукцией 0.1 Тл (а), 3 Тл (б). На вставке кривые обозначены в соответствии с номерами плёнок, приведённых в таблице 1.

Работа выполнена при поддержке Российского Научного Фонда, проект № 25-72-20063

- [1] Ivkov S.A., Barkov K.A., Domashevskaya E.P., Ganshina E.A., Goloshchapov D.L., Ryabtsev S.V., Sitnikov A.V., Seredin P.V. // Appl. Sci. 2023. V. 13. № 5. P. 2992. Doi: 10.3390/app13052992
- [2] Калинин Ю.Е., Ситников А.В., Макагонов В.А., Фошин В.А., Волочаев М.Н. // Физика твердого тела. 2024. V. 66. № 11. Р. 1941–1949. Doi: 10.61011/FTT.2024.11.59331.305
- [3] Kalinin Yu.E. et al. // Journal of Magnetism and Magnetic Materials. 2024. V. 604. P. 172287. Doi: 10.1016/j.jmmm.2024.172287

Исследование магнитных свойств и динамики неелевского скирмиона на беговом треке

<u>Тааев Т.А.</u>, Хизриев К.Ш.

Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия, e-mail: taaev89@mail.ru

Создание и управление скирмионами являются самими актуальными проблемами в исследованиях магнитных скирмионов в настоящее время [1]. Большую роль в этом играют неоднородности пленок и различные дефекты, которые всегда присутствуют на микро- и наномасштабном уровне. Устойчивость скирмионов в присутствии немагнитных дефектов подробно исследовались в рамках теории переходного состояния [2], где было показано, что зарождения скирмионов энергетически выгодны на немагнитных дефектах.

В настоящей работе мы представили модель магнитного бегового трека для изучения неелевских скирмионов. Для расчета динамики намагниченности использован пакет микромагнитного моделирования MuMax3 [3]:

$$\frac{\partial \vec{m}}{\partial t} = \gamma \frac{1}{1 + \alpha^2} \left(\vec{m} \times \vec{H}_{eff} + \alpha \left(\vec{m} \times \left(\vec{m} \times \vec{H}_{eff} \right) \right) \right) + \tau_{ZL} , \qquad (1)$$

где τ_{ZL} слагаемое, описывающее крутящий спиновый момент Жанга-Ли [4]:

$$\tau_{ZL} = \frac{b}{1+\alpha^2} \{ \vec{m} \times (\vec{m} \times (\vec{j} \cdot \nabla) \vec{m}) + (\beta - \alpha) (\vec{m} \times (\vec{j} \cdot \nabla) \vec{m}) \}, \qquad (2)$$

где γ — гиромагнитное соотношение, α — коэффициент затухания, m — нормированная намагниченность, H_{eff} — эффективное поле, j — плотность тока, β — неадиабатический фактор, $b = P\mu_B/eM_s(1+\beta^2)$, P — поляризация тока, μ_B — магнетон Бора, e — заряд электрона.

Нам удалось получить зависимость радиуса магнитного скирмиона от величины обменных параметров, константы анизотропии, а также внешнего магнитного поля. Построены магнитные фазовые диаграммы. Изучена динамика скирмиона от его размера и величины спин-поляризованного тока. Нанесение немагнитных дефектов на беговом треке позволило нам контролировать движение скирмиона и обойти проблему скирмионного холловского эффекта.

Исследование выполнено при финансовой поддержке Российского научного фонда в рамках проекта № 25-22-20086 («Исследование моделей магнитных наносистем с топологически устойчивыми структурами с помощью микромагнитного моделирования»).

- [1] C. Back, et al., J. Phys. D: Appl. Phys. 53, 363001 (2020).
- [2] P.F. Bessarab, et al., Computer Physics Comm. 196, 335 (2015).
- [3] A. Vansteenkiste, et al., AIP Advances 4, 107133 (2014).
- [4] R.M. Menezes, et al., Physical Review B. 99, 104409 (2019).

Секция В3

Нелинейные явления и хаос в конденсированных средах

Электрофизические свойства углеродных наноматериалов при высоких давлениях

Соколовский Д.Н., Волкова Я.Ю., Бабушкин А.Н.

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия e-mail: dmitry.sokolovsky@urfu.ru

Транспортные свойства углеродных наноматериалов определяют возможность их дальнейшего использования в микроэлектронике. Например, физические свойства углеродных нанотрубок зависят от геометрии трубок [1], и могут быть изменены воздействием давления или напряжения [2]. Электрические свойства многих композитов, содержащих наноструктуры, также сильно зависят от давления, что обусловлено не только строением самих наноструктур, но и контактами между соседними частицами, и образованием связей при определённых условиях. Подобные зависимости могут быть использованы при создании различных электромеханических устройств и преобразователей [2].

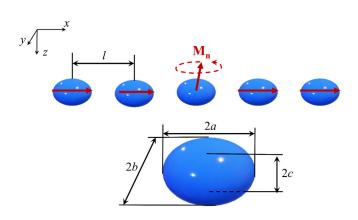
В настоящей работе представлены результаты исследования влияния высокого давления на электрофизические свойства и структуру жгутов одностенных и двустенных углеродных нанотрубок, а также фуллерена С₇₀.

Для изучения влияния высоких давлений на электрические характеристики в работе использовали камеры высокого давления с проводящими алмазными наковальнями. Исследования структуры образцов при высоких давлениях также проводились в ячейках с алмазными наковальнями методами рентгеновской дифракции и спектроскопии комбинационного рассеяния.

Исследование влияния высокого давления на электрические характеристики жгутов углеродных нанотрубок показало, что при давлениях 5–36 ГПа наблюдается ряд особенностей, обусловленных процессами разрушения нанотрубок наибольших диаметров и их частично обратимой полимеризацией. В случае двустенных нанотрубок также удалось экспериментально подтвердить двухступенчатый механизм разрушения двустенных углеродных нанотрубок со средним диаметром порядка 1,5 нм.

Результаты исследований структурных преобразований фуллерена С₇₀ при давлениях до 50 ГПа, свидетельствуют о частично обратимой аморфизации фуллерена в диапазоне давлений 14–33 ГПа. Полученные барические зависимости электрического сопротивления, энергии активации, и термоЭДС хорошо согласуются с результатами спектроскопии комбинационного рассеяния и рентгеновской дифракции.

^[1] А.В.Елецкий, УФН **179**, 225 (2009).


^[2] J.Lee, J.Kim et al., Composites Part B: Engineering 177, 107364 (2019).

Дискретные бризеры в линейной цепочке магнитных наночастиц с учетом диссипации

<u>Бычков И.В.</u>¹, Кузьмин Д.А.¹, Екомасов Е.Г.²

¹ Челябинский государственный университет, г. Челябинск, Россия ² Уфимский университет науки и технологий, г. Уфа, Россия e-mail: bychkov@csu.ru

Свойствам периодических массивов магнитных наночастиц уделяется внимание достаточно долгое время [1-5]. Помимо их потенциальной прикладной пользы, эти массивы предоставляют удобную платформу для изучения различных нелинейных магнитных волновых явлений [6-8]. Ангармоническая локализация колебаний в решетках занимает особое место среди других нелинейных волновых явлений. Дискретные бризеры представляют собой периодические (ДБ) [9-12] во времени пространственно локализованные возбуждения. В отличие от своих аналогов, которые обычно существуют континуальных интегрируемых системах, ДБ могут существовать в дискретных средах, которые не обязательно описываются интегрируемыми уравнениями. Ранее существование ДБ было предсказано теоретически для цепочек магнитных наноточек связанных диполь-дипольным взаимодействием [13]. Однако в расчетах предполагалось отсутствие диссипации, а также не учтено наличие размагничивающих полей в наночастицах с конечными размерами. Настоящая работа посвящена исследованию возможности и условий существования ДБ в цепочке магнитных наночастиц, с учетом указанных особенностей. Каждая частица представляет собой эллипсоид с полуосями

Puc.1 Цепочка магнитных наночастиц эллипсоидальной формы.

а, b и с (см. рис. 1). Предполагается, что размеры частиц и температурный режим, позволяют считать частицы однодоменными с однородным распределением намагниченности.

Моделирование динамики намагниченности в такой цепочке наночастиц проведено в рамках численного решения уравнения Ландау-Лифшица с учетом диссипативного члена

в форме Гильберта:

$$\frac{d\mathbf{M}_n}{dt} = -\gamma \left[\mathbf{M}_n, \mathbf{H}_{eff,n} \right] + \alpha \left[\mathbf{M}_n, \frac{d\mathbf{M}_n}{dt} \right],$$

$$\boldsymbol{H}_{eff,n} = \boldsymbol{H}_{d,n} + \boldsymbol{H}_{d-d,n} \tag{1}$$

Здесь $\mathbf{H}_{d,n} = (-N_x M_{x,n}, -N_y M_{y,n}, -N_z M_{z,n})$ — размагничивающее поле, N_i — размагничивающие факторы наночастицы. Эффективное поле, возникающее в системе за счет диполь-дипольного взаимодействия, имеет следующий вид:

$$\mathbf{H}_{d-d,n} = \sum_{k \neq n} \frac{3(\mathbf{M}_k \mathbf{R}_{nk}) \mathbf{R}_{nk} - \mathbf{M}_k |\mathbf{R}_{nk}|^2}{|\mathbf{R}_{nk}|^5},$$

где \mathbf{R}_{nk} — радиус-вектор направленный из центра частицы n в центр частицы k.

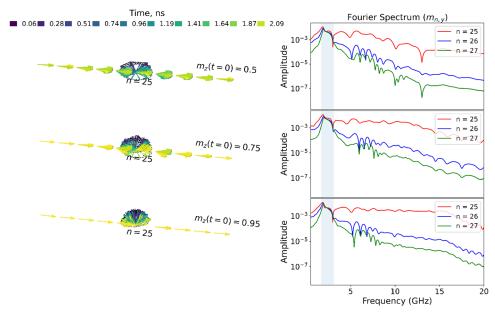


Рис.2 Динамика намагниченности в цепочке наночастиц при начальном отклонении от равновесия намагниченности одной частицы в центре цепочки. Сверху вниз: $m_{z0} = 0.5, 0.75, 0.95$. Состояние намагниченности в разные моменты времени обозначены разным цветом. Справа приведены частотные спектры m_y компоненты намагниченности частиц c = 25-27. Затененная область соответствует спектру линейных спиновых волн в цепочке.

указанной цепочке магнитных наночастиц обнаружено существование ДБ, особенно ярко выраженных в цепочках частиц с a = b >>c (т.е. близких по форме к дискам). На рис. 2 приведен пример моделирования ДБ в цепочки из 50 наночастиц пермаллоя с размерами a =b = 50 нм, c = 5 нм и расстоянием между частицами l = 100 нм при отсутствии диссипации. При моделировании начальное отклонение 25-й частицы составляло $M_z = 0.75 M_0$, намагниченности всех остальных частиц Без направлены вдоль оси х. диссипации компоненты намагниченности M_x и M_y совершают осцилляции, в то время как компонента M_z остается практически неизменной. При учете диссипации можно заметить, что происходит постепенное уменьшение частоты ДБ, сопровождающееся увеличением амплитуды колебаний компонент M_x и M_y .

Качественное изменение в поведении системы наблюдается в момент времени около 3 нс. Тогда осцилляции намагниченности в плоскости xy сменяются осцилляциями в плоскости yz, т.е. стандартными магнонными колебаниями около равновесного состояния. Компонента M_x при этом релаксирует к равновесному состоянию $M_x = 1$. В спектре Фурье можно отметить широкую полосу частот колебаний, соответствующую плавному уменьшению частоты колебаний ДБ и пик в полосе частот, соответствующей линейным магнонам в цепочке. Энергия ДБ также уменьшается с течением времени.

Увеличение размерности системы (2D — решетки магнитных наночастиц) открывает дополнительные возможности для существования нелинейных состояний, связанные с разнообразием симметрии решеток и возможностью существования топологически защищенных состояний в таких системах.

Исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации (075-00187-24-04) и государственного задания (приказ № 075-03-2024-123/1 от 15 февраля 2024 г., тема № 324-21).

- [1] P.C.Waterman, N.E.Pedersen, J. Appl. Phys. **59**, 2609 (1986).
- [2] P. Vavassori et al., J. Appl. Phys. **88**, 999 (2000).
- [3] А.Ю.Галкин, Б.А.Иванов, ЖЭТФ **136**, 87 (2009).
- [4] С.А.Дзян, Б.А.Иванов, ЖЭТФ **143**, 1131 (2013).
- [5] J.E. Park et al., ACS Nano 16, 3152 (2022).
- [6] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono, Science **289**, 930 (2000).
- [7] M.Pardavi-Horvath, G.S.Makeeva, O.A.Golovanov, IEEE Trans. Magn. 44, 3067 (2008).
- [8] S.Ishizaka, K.Nakamura, J. Magn. Magn. Mater. 210, 15 (2000).
- [9] A.A. Ovchinnikov, Sov. Phys. JETP 30, 147 (1970).
- [10] S. Flach and A.V. Gorbach, Phys. Reps. 467, 1 (2008).
- [11] С.В.Дмитриев, Е.А.Корзникова, Ю.А.Баимова, М.Г.Веларде, УФН **186**, 471 (2016).
- [12] I.G.Bostrem, E.G.Ekomasov, J.Kishine et al., Phys. Rev. B. **104**, 214420 (2021).
- [13] R.L.Pylypchuk, Y.Zolotaryuk, Low Temp. Phys. 41, 733 (2015).

Исследование активированных углей методами колебательной спектроскопии

<u>Рабаданов К.Ш.</u>, Гафуров М.М, Кубатаев З.Ю., Свешникова Д.А., Зейналов Р.З.

Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: rksh83@mail.ru

Активированные УГЛИ (AY)остаются ИЗ наиболее используемых классов сорбентами благодаря уникальному сочетанию высокой удельной поверхности, развитой микро-/мезопористости предопределяет химической инертности, ЧТО ИХ использование процессах водоочистке, газоразделении, каталитических И электрохимических устройствах. Однако эффективность АУ в конкретных приложениях определяется не только текстурными характеристиками, но и тонкой организацией углеродной матрицы — степенью дефектности sp²-доменов, типом поверхностных функциональных групп.

Методы колебательной спектроскопии, в частности инфракрасная (ИК) и спектроскопия комбинационного рассеяния (Раман), играют значимую роль в изучении сорбентов на основе активированных углей, обеспечивая быструю, прямую и недеструктивную оценку их поверхностных и характеристик. ИК-спектроскопия структурных позволяет идентифицировать широкий спектр функциональных групп, присутствующих на поверхности активированных углей, таких как гидроксильные (-ОН), карбоксильные (-СООН), карбонильные (С=О), эфирные (С-О-С) и фенольные группы, которые активно участвуют в адсорбции ионов и других загрязнителей. Изменения интенсивности, формы и положения соответствующих спектральных полос после контакта с ионами свидетельствуют о специфическом взаимодействии этих функциональных групп с сорбатами и позволяют детально исследовать адсорбционных процессов. КР спектроскопия высокочувствительным и информативным методом оценки структурного состояния и степени упорядоченности углеродных материалов, включая активированные угли, широко используемые в качестве сорбентов.

работа посвящена комплексному каменноугольные (КМ-2, сульфоуголь), древесные (БАУ, ДАК), а также модифицированные образцы КМ-2 (ОКМ-2 – обработка азотной кислотой, ФКМ-2 обработка фосфорной кислотой) методами И сорбционным ИК-спектроскопии сочетании анализом И электронно-микроскопическими измерениями. Целью является установление количественных корреляций спектральными между маркерами (позиции интенсивности D-/G-полос, И полос кислородсодержащих групп) и сорбционной активностью углей

В КР спектрах активированных углей выделяются две основные полосы: полоса D (~1350 см⁻¹) и полоса G (~1580–1600 см⁻¹). Полоса D («дефектная») возникает вследствие присутствия дефектов, вакансий, неоднородностей, а также sp³- и sp-гибридизированных атомов углерода и отражает структурного степень беспорядка и аморфности материала. В то полоса G («графитная») соответствует колебаниям связей С-С в упорядоченных графитоподобных

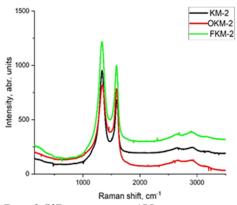


Рис.1 КР спектры АУ.

областях с преобладанием sp²-гибридизации углерода.

Отношение интенсивностей полос D и $G(I_D/I_G)$ используется в качестве основного спектрального параметра для качественной оценки степени беспорядка дефектности структурного И углеродного каркаса активированных углей. Более высокие значения I_D/I_G соответствуют аморфных повышенному содержанию дефектов И уменьшением графитоподобных сопровождающемуся размера микрокристаллитов. Такие структурные особенности обычно приводят к дефектных увеличению общей площади активных существенно влияет на сорбционные свойства материала. Напротив, снижение этого отношения указывает на повышение упорядоченности структуры, увеличение размеров графитоподобных доменов и снижение относительного числа дефектов, что может снижать общую реакционную и сорбционную активность материала. Наиболее высокая дефектности ($I_D/I_G \ge 1,3$) характерна для образцов КМ-2 и БАУ, что соответствует малым значениям L_a (≈ 3 нм) и указывает на преобладание аморфных и сильно дефектных участков в структуре. Такие материалы обладают развитой микропористой структурой. Модификация КМ-2 с применением азотной кислоты (ОКМ-2) и фосфорсодержащих реагентов $(\Phi KM-2)$ приводит к снижению I_D/I_G до 1,09–1,22 и увеличению размеров кристаллитов до 3,6–4,0 нм, что свидетельствует о формировании более упорядоченной структуры с активными функциональными группами. Особенно выделяется сульфоуголь, для которого I_D/I_G составляет 0,83, а L_a достигает 5,3 нм - это указывает на наибольшую степень графитоподобной упорядоченности и потенциально высокую селективность по отношению к ионам.

ИК спектроскопия позволяет выявить и охарактеризовать разнообразные функциональные группы, которые существенно влияют на сорбционные свойства активированных углей. На основании анализа ИКспектров исследованных АУ можно выделить специфические особенности каждого типа сорбента. Каменноугольный КМ-2 демонстрирует

интенсивную полосу –ОН (3440 см⁻¹) и ароматическую С=С-полосу 1580– 1600 см⁻¹, что указывает на базовый набор гидроксильных и карбоксильных центров адсорбции. Окисленный вариант ОКМ-2 (HNO₃) характеризуется уширением/сдвигом –ОН-полосы и усилением полос С–ОН (900–1250 см⁻¹) + появлением карбонильных пиков 1720–1770 см⁻¹, подтверждая рост плотности кислородных групп. Для ФКМ-2 интенсивность С-ОН уменьшается, но возникают новые полосы 1200–1400 см⁻¹, связанные с Р-О/Р-С-фрагментами, свидетельствуя о фосфорировании поверхности. Сульфоуголь помимо -OH и C-OH содержит характерную S=O-полосу 1030 см⁻¹, отражающую присутствие серосодержащих функционалов. Древесный БАУ сохраняет полосу –ОН 3440 см $^{-1}$ и С–О 1130 см $^{-1}$, тогда как ДАК лишён выраженной –ОН-полосы, но проявляет усилившуюся ароматическую С=С-полосу 1600–1520 см-1. Спектральные различия подтверждают, что химическая модификация задаёт уникальный набор поверхностных групп, прямо влияющий на сорбционную селективность углей к тяжёлым металлам.

Таким образом, показано, что методы ИК- и КР-спектроскопии эффективно характеризовать как химический поверхности, так и степень структурной упорядоченности активированных углей. На примере различных АУ, Установлены корреляции между параметром I_D/I_G, отражающим дефектность углеродной матрицы, и сорбционной активностью. Химическая модификация углей (азотной, кислотами, сульфированием) фосфорной формирует специфические функциональные группы (-COOH, P-O, S=O), определяющие механизм сорбции и селективность. Полученные спектральные маркеры позволяют прогнозировать поведение углеродных сорбентов и оптимизировать условия их получения для различных задач.

Работа выполнена на оборудовании АЦКП ИФ ДФИЦ РАН при финансовой поддержке Российского научного фонда (грант № 25-13-20087).

К модели эффективной теплопроводности магматических и метаморфических пород глубокого залегания

Аливердиев А.А. ^{1,2,3,*}, Алиев Р.М. ^{1,4}, Амирова А.А. ³, Бейбалаев В.Д. ^{1,2,5}, Григорьев Б.А. ⁶, Савватеева М.В. ⁷, Эфендиева М.Р. ²

¹ ИПГВЭ ОИВТ РАН, Махачкала, Россия
² Дагестанский государственный университет, Махачкала, Россия
³ Институт физики ДФИЦ РАН, Махачкала, Россия
⁴ Дагестанский государственный технический университет, Махачкала, Россия
⁵ Дагестанский государственный университет народного хозяйства, Махачкала, Россия

⁶ ООО «Газпром ВНИИ ГАЗ», Развилка, Московская обл., Россия
⁷ Университет ИТМО, Санкт-Петербург, Россия

*e-mail: aliverdi@mail.ru

Описание процессов, протекающих в глубинах планет, в том числе в недрах Земли, отвечающих за формирование и развитие тепловых полей, магнитосферы и т.д. требует глубокого понимания материи в широком диапазоне температур и давлений [1-7]. В этой связи особую важность приобретают исследования, связанные c составлением моделей температурно-барических зависимостей теплофизических характеристик магматических и метаморфических пород в диапазоне давлений от атмосферного до сотен МПа, присущих ближней земной коре и далее до 10 ГПа, соответствующих верхней мантии. В докладе мы предприняли попытку обобщить ряд недавних исследований по изучению эффективной теплопроводности (ЭТ) пород глубокого залегания.

Результаты подтвердили возможность описания температурнобарической зависимости ЭТ посредством степенной температурной

аппроксимации
$$\lambda(T,P) = \lambda(T_0,P) \cdot \left(\frac{T}{T_0}\right)^{n(P)}$$
 [6-8].

В бдиапазоне от атмосферного до нескольких сотен МПа имеет место достаточно выраженный нелинейный рост ЭТ при фиксированной температуре с давлением, переходящий затем в зависимость, допускающую линейную аппроксимацию. При этом барическая зависимость n(P), как правило, имеет достаточно сложный характер (см. рис. 1). На участке от атмосферного давления до нескольких сотен МПа имеет место ослабление зависимости, что, при росте значения ЭТ, по-видимому, обусловлено ослаблением теплосопротивления границ зерен. Далее происходит перегиб и рост температурной зависимости ЭТ породы в целом, по меньшей мере, до 2-3 ГПа.

Результаты исследований показывают, что для составления адекватных моделей барические участки от атмосферного давления до примерно 500-

 $600~\mathrm{M\Pi a}$, а также от 3 до $6~\mathrm{\Gamma\Pi a}$ требуют дальнейшего экспериментального изучения.

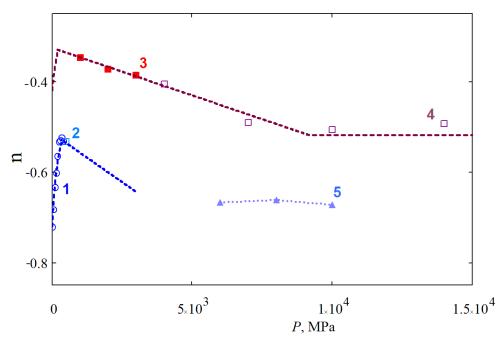


Рис 1. Барические зависимости коэффициента п в температурных зависимостях ЭТ для следующих горных пород: гранит (1) [1], сиеногранит (2, одна точка) [2], эклогит (3) [3] и оливинов (4) [4] и (5) [5].

- [1] S. Emirov, A. Aliverdiev, V. Beybalaev, and A. Amirova, Thermal Science **25**, 2493–2501 (2021). DOI: 10.2298/TSCI200408176E
- [2] H. Fu, B. Zhang, J. Ge, et al., American Mineralogist **104**, 1533–1545 (2019). DOI:10.2138/am-2019-7099
- [3] B. Zhang, H. Fei, J. Ge, et al. Nature Communications **13** 4673 (2022). DOI: 10.1038/s41467-022-32484-w
- [4] Y. Xu, T.J. Shankland, S. Linhardt, et al. Physics of the Earth and Planetary Interiors **143–144**, 321-336 (2004). DOI: 10.1016/j.pepi.2004.03.005
- [5] Y. Zhang, T. Yoshino, A. Yoneda, and M. Osako, Earth and Planetary Science Letters **519**, 109-119 (2019). DOI: 10.1016/j.epsl.2019.04.048
- [6] А.А. Аливердиев, Р.М. Алиев, А.А. Амирова и др., ТВТ **62**, 196-201 (2024). DOI: 10.31857/S0040364424020051
- [7] А.А. Аливердиев, Р.М.Алиев, В.Д. Бейбалаев, Б.А. Григорьев, Ю.П. Заричняк, Теплопроводность горных пород в естественных условиях: монография, Издательство ДГУ, Махачкала (2023) ISBN: 978-9913-0281-4
- [8] С.Н. Эмиров А.А. Аливердиев, В.Д. Бейбалаев и др., Известия Российской академии наук. Серия физическая **85**, 1273–1277 (2021). DOI: 10.31857/S036767652109009X

Нелинейные колебания вектора намагниченности в трёхслойной плёнке железо-иттриевого граната с немагнитной прослойкой

Абрамовский И.Е.¹, Котов Л.Н.¹, Голов А.В.¹, Наяк Ч.²

¹ Сыктывкарский государственный университет, Сыктывкар, Россия, e-mail: abramowsk-ivan@mail.ru

² Веллурский технологический институт, Веллур, Индия

активно изучается нелинейная магнитная В последнее время структур в контексте их применения в динамика многослойных спинтронике, в частности, это касается разработки спиновых транзисторов и ячеек памяти MRAM [1]. Применение многослойных магнитных плёнок базируется на понимании определённых принципов и явлений, которые связаны с квантово-механической природой и понятии ориентационных переходов в таких структурах. Эти эффекты позволяют использовать такие конструкции в современных электронных устройствах [2]. Среди устройств, основанных на многослойных плёнках, можно выделить магниторезистивную память, туннельные магниторезистивные устройства, магнитные сенсоры, магнитооптические переключатели, магнитоэлектрические устройства, устройства спинтроники на основе квантовых точек и квантовых ям, а также гибридные структуры, сочетающие магнитные и полупроводниковые материалы [1].

Данная работа посвящена исследованию нелинейной магнитной нормированного вектора динамики магнитного момента ориентационных переходов в трёхслойной плёнке структурой ферримагнетик 1/диэлектрик/ферримагнетик 2, где в роли ферримагнетика выступает железо-иттриевый гранат (ЖИГ) при температуре 100 К. Данная работа является продолжением работы [3],В которой проанализировано влияние поля обмена и поля кубической анизотропии на трёхслойной ориентационные переходы в структуре. Исследуемая структура состоит из двух магнитных подслоёв с незначительно различающимися намагниченностями насыщения немагнитного диэлектрического буфера между ними. Обменное поле изменялось посредством изменения толщины немагнитной диэлектрической прослойки, но не напрямую, а через константу связи. Отличительная особенность этой работы от [3] состоит в том, что здесь рассмотрены материальные параметры системы, соответствующие кристаллу ЖИГ при температуре 100 К.

Для решения данной задачи использовалось классическое векторное уравнение определения магнитной учётом динамики Н c диссипации. Речь илёт обыкновенном дифференциальном уравнении Ландау-Лифшица-Гильберта, сложность решения которого обусловлена различными вкладами эффективное В поле, ИЗ которых магнитное вытекает сильно-нелинейное вектора поведение

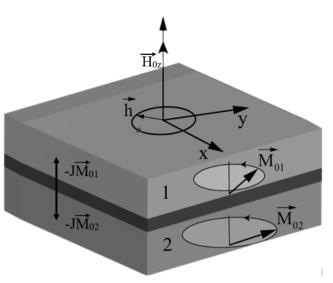


Рис. 1 Схема моделируемой структуры.

намагниченности. В виду учёта нелинейности уравнения, решение отыскивалось численно в пакете математических программ MATLAB с помощью встроенного решателя методом Рунге-Кутты 4-5 порядков точности. Выражение для эффективного поля включало в себя: переменное магнитное поле с круговой поляризацией, находящееся в плоскости Оху плёнки; постоянное магнитное поле, приложенное нормально структуре; поле кубической анизотропии, рассмотренное до второго коэффициента включительно; поле обменного взаимодействия, действие которого направлено от одного магнитного слоя к другому. Для одного слоя эффективное поле описывается выражением (1), одна из компонент поля кубической анизотропии для одного слоя выражением (2), а одна из компонент векторного дифференциального уравнения, описывающего динамику намагниченности одного из магнитных слоёв, выражением (3):

$$\boldsymbol{H}_{e} = h_{x,y} \boldsymbol{e}_{x,y} + H_{0z} \boldsymbol{e}_{z} - 4\pi M_{0} m_{z} \boldsymbol{e}_{z} - J \boldsymbol{M} + \boldsymbol{H}_{a}, \tag{1}$$

$$H_{ax} = \frac{2K_1}{M_0} m_x (m_y^2 + m_z^2) + \frac{2K_2}{M_0} m_x (m_y^2 m_z^2)), \tag{2}$$

$$\frac{\partial m_{xl}}{\partial t} = -\frac{\gamma}{I + \alpha_I^2} \cdot \left[\left(m_{yl} + \alpha_I m_{xl} m_{zl} \right) \cdot H_{ezl} - \left(m_{zl} - \alpha_I m_{yl} m_{xl} \right) \cdot H_{eyl} - \alpha_I \cdot \left(m_{yl}^2 + m_{zl}^2 \right) \cdot H_{exl} \right], \quad (3)$$

где e_i — единичные вектора, m_{il} единичная i-компонента намагниченности (i=x, y, z) 1 слоя, γ - гиромагнитное отношение для спина электрона, α_l =0.15 — коэффициент магнитной диссипации слоя, M_0 — намагниченность насыщения слоя, $h_{x,y}$ — компоненты переменного магнитного поля, H_{0z} — постоянное магнитное поле вдоль Oz, J — коэффициент обменного взаимодействия, $K_{l,2}$ — коэффициенты кубической

анизотропии. Дополнительные выражения для компонент поля анизотропии и компонент намагниченности получаются циклической перестановкой индексов x, y, z, а выражения для второго магнитного слоя получаются из (3) заменой индекса 1 на 2.

При расчётах предполагалось, что константы диссипации магнитных слоёв одинаковы $\alpha_1 = \alpha_2$, коэффициенты анизотропии $K_1 = -20 \cdot 10^3$ эрг/см³, $K_2 = -2.3 \cdot 10^3$ эрг/см³, также одинаковы для обоих слоёв плёнки, а величина намагниченности соседних слоёв незначительно $M_{02} = 1980/4\pi \Gamma c$. $M_{01} = 1985/4\pi \Gamma c$, Значения намагниченности магнитной анизотропии были выбраны аналогичными параметрам кристалла ЖИГ при 100 К. Обменное поле взаимодействия слоёв бралось пропорциональным намагниченности. магнитных Амплитуда поляризованного по кругу переменного магнитного поля $h_0 = 10 \, \text{Э}$ и частотой $f_0 = 520 \, \text{МГц}$, ориентированное в плоскости магнитных слоёв, и постоянное магнитное поле $H_{0z} = 1700$ Э направленное по нормали к плоскости структуры.

В результате численных расчётов были построены несколько видов зависимостей фазовые портреты И намагниченности. В этой работе мы подробнее остановимся на фазовых графиках трёхмерного вида. Более ранние работы демонстрировали фазовые портреты на плоскости, что связано с более простым видом получаемых зависимостей, но которые не позволяют определить интересные динамические колебательные режимы. Трёхмерные фазовые портреты отчётливо демонстрируют изменение энергетического ландшафта в слоях структуры. На рис. 2а видны 4 области, описываемых вектором намагниченности. Каждая из 4 областей обладает примерно равной вероятностью заполнения, что видно по повторяющимся фазовым рисункам в этих областях. Данные фазовые рисунки в основном характеризуются значением поля кубической анизотропии, где внешние петли зависят от значения K_1 , а внутренние от K_2 . При включении обменного поля, происходит изменение энергетической поверхности, выстроенной полем анизотропии. И, если поле анизотропии формирует 4 области, то поле обмена влияет только на одну из них, а на какую именно - это зависит от величины константы обменного взаимодействия J. Действие обменного поля уменьшает глубину минимума энергии, вызванного полем кубической анизотропии, что видно на фазовой диаграмме, как уменьшение густоты траекторий, по которым двигается вектор намагниченности. При J = 3 эрг/см³ глубина минимума энергии уменьшается в области, описываемой диапазоном $m_x < 0$ и $m_v < 0$; при J = 6 эрг/см³ – область $m_x < 0$ и $m_y > 0$; при J = 9 эрг/см³ – область $m_y > 0$ и $\forall m_x$, так как действие обменного поля приложено между минимумами; при $J = 12 \text{ эрг/см}^3 - \text{область } m_x < 0 \text{ и } m_y < 0 - \text{полный круг замкнулся по часовой }$ стрелке.

Полученные результаты численных расчётов показывают, что действие обменного поля кубической поля обладают анизотропии одинаковой природой, но являются конкурирующими между собой вкладами. В малом интервале изменения обменного поля наблюдаются локальные изменения минимумов уменьшение энергии, которых происходит часовой стрелке с ростом

обменного поля.

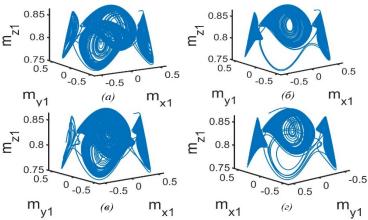


Рис.2 Фазовые графики для 1-ого слоя: (а) J=0; (б) J=3; (в-г) J=6 (разные ракурсы).

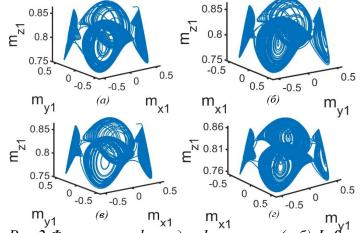


Рис. 2 Фазовые графики для 1-ого слоя: (а-б) J=9; (в-г) J=12 (разные ракурсы).

Исследования проведены за счёт гранта РНФ, проект № 25-72-20063

- [1] A.Claas, "Micromagnetics and spintronics: models and numerical methods", Eur. Phys. J. B. **92**. 120 (2019).
- [2] U.Vernik, A.M.Lomonosov, V.S.Vlasov, L.N.Kotov, D.A.Kuzmin, I.V.Bychkov, P.Vavassori, V.V.Temnov, Phys. Rev. B. **106**, 144420 (2022).
- [3] И.Е. Абрамовский, Л. Н.Котов, А.В. Голов, ФТТ. **66**. № 12. С. 2145-2147 (2024).

Влияние состава композита (CoFeB+SiO₂) на температурные и частотные зависимости импеданса и тангенса угла потерь двухслойной планарной структуры: полимер – композит

<u>Якимов М.В.</u>¹, Котов Л.Н.¹, Ласёк М.П.¹, Ситников А.В.², Калинин Ю.Е.²

¹ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сыктывкарский государственный университет имени Питирима Сорокина», Сыктывкар, Россия

e-mail: YakimovMaximV@yandex.ru

² Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет», Воронеж, Россия

Полимерные плёнки с композитными металл-диэлектрическими покрытиями обладают необычными электрическими, магнитными и импедансными свойствами, которые измеряются в зависимости от толщины, концентрации компонентов и параметров напыления. Эти плёнки могут использоваться в микроэлектронике, магнитном экранировании и нелинейный фильтрах. Одним из способов создания новых материалов — это двухслойные планарные структуры полимер-композит, получаемые путём напыления композитного слоя на полимерную плёнку. Исследование таких структур вызывает интерес к процессам поляризации и переноса зарядов в полимерах и композитах. Метод импедансной спектроскопии позволяет изучать свойства полимеров с тонкими композитным покрытием, получая спектры импеданса и тангенса угла потерь в широком диапазоне частот и температур.

В данной работе изучено влияние концентрации x металлического сплава $Co_{0.41}Fe_{0.39}B_{0.20}$ композитного слоя на температурные и частотные зависимости компонент импеданса и тангенса угла потерь двухслойной планарной структуры: полимер–композит в интервале температур 120-420 К и в диапазоне частот 1 Hz-10 MHz.

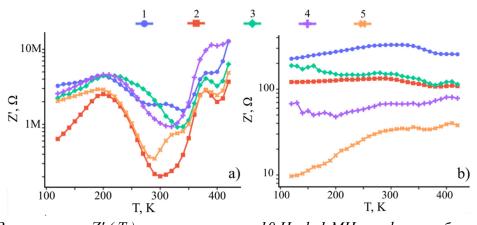


Рис. 1. Зависимости Z' (T) при частотах: a-10 Hz, b-1 MHz, цифрами обозначены линии с концентрациями х: 1-0.47, 2-0.49, 3-0.65, 4-0.70, 5-0.84.

На рис. 1 показаны температурные зависимости вещественной компоненты импеданса Z'(T) двухслойной плёнки: полимер-композит на частотах 100 Hz и 1 MHz. Как видно из рис. 1, на температурной зависимости вещественной компоненты импеданса Z'(T) наблюдается два T=210 Kмаксимума окрестностях температур Высокотемпературный максимум связан с температурой стеклования лавсана и далее мы рассматривать его не будем. Наибольшая величина амплитуды максимума при $T=210 \,\mathrm{K}$ наблюдается для плёнок с $x=0.49 \,\mathrm{c}$ гранулированной структурой композитного слоя. Ширина этого максимума увеличивается с ростом концентрации x композитного слоя. увеличении частоты тока до 1 MHz вещественная компонента импеданса Z'увеличивается с ростом температуры до 300 К для плёнок с x=0.47, 0.84, а для плёнки x=0.49 практически не зависит от температуры. Для плёнок при x=0.65, 0.7 импеданс Z'уменьшается с ростом температуры до 200 К и далее незначительно растёт при x=0.7 или падает при x=0.65.

На рис. 2 показаны температурные зависимости мнимой компоненты импеданса Z''(T) двухслойной плёнки: полимер-композит на частотах $100 \ \mathrm{Hz}$ и $1 \ \mathrm{MHz}$.

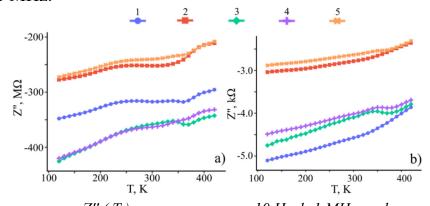


Рис. 2. Зависимости Z" (Т) при частотах: a-10 Hz, b-1 MHz, цифрами обозначены линии с концентрациями х: 1-0.47, 2-0.49, 3-0.65, 4-0.70, 5-0.84.

Как видно из рис. 2 мнимая компонента импеданса Z'' плёнок растёт для всех концентраций металлического сплава x композитного слоя, причём чем больше x, тем больше величина Z''. При увеличении частоты тока до 1 MHz, также наблюдается рост Z'' с температурой для плёнок со всеми концентрациями x. Однако, сами значения мнимой компоненты импеданса Z'' уменьшаются более чем на порядок. Близкое поведение Z''(T) с разными концентрациями x говорит о том, что температурное поведение Z''(T) в основном задаётся лавсановой плёнкой, а её величина Z'' зависит и от концентрацией x композитного слоя.

Мнимая компонента импеданса Z'' была представлена нами как функция от частоты в виде: $Z''(f) = A \cdot f^n$, где A — константа, n — показатель степени. Тогда $\log_{10} Z'' = \log_{10} A + n \cdot \log_{10} f$, а отношение $\Delta \log_{10} Z'' / \Delta \log_{10} f = n$. На рис. 3 показаны температурные зависимости

показателя степени n(T) для двухслойной плёнки: полимер-композит на частотах 1 kHz и 1 MHz.

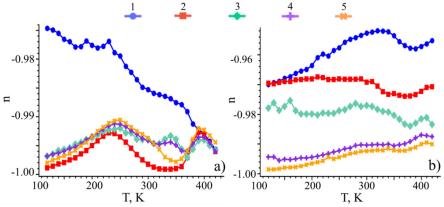


Рис. 3. Зависимости показателя степени n(T) при частотах: a-1 kHz, b-1 MHz, цифрами обозначены линии с концентрациями x: 1-0.47, 2-0.49, 3-0.65, 4-0.70, 5-0.84.

Как видно из рис. 3, показатель степени n для композитного слоя с наименьшей концентрацией х убывает с ростом температуры. Для плёнок с x > 0.49 на зависимости n(T) наблюдается максимум в окрестности 250 К. С 1 MHz поведение температурной ростом ДО показателя степени n(T) значительно изменяется. Для плёнки с малой концентрацией x=0.47, показатель степени n растёт с увеличением температуры вплоть до 320 К. Для плёнок с другими x = 0.49, 0.65,показатель степени n(T) слабо зависит от температуры при $T=120-300~{\rm K},$ а при больших температурах T > 300 K зависимость n(T) имеет спадающий участок. Близкое поведение n(T) для плёнок с большими концентрациями x>0.7 говорит о том, что температурное поведение n(T) в основном задаётся лавсановой плёнкой и наибольший вклад в поведение n(T) вносят плёнки с гранулированной структурой. На рис. 4 показаны температурные зависимости тангенса потерь tan $\delta = Z''/Z'$ для двухслойной плёнки: полимер-композит на частотах 10 Hz и 1 MHz.

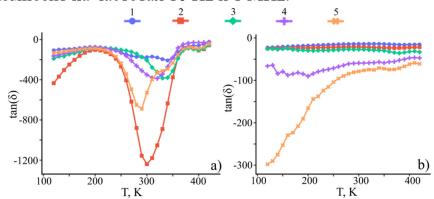


Рис. 4. Зависимости тангенса угла потерь tanδ при частотах: a-10 Hz, b-1 MHz, цифрами обозначены линии с концентрациями x: 1-0.47, 2-0.49, 3-0.65, 4-0.70, 5-0.84.

Для плёнок с разными x при низких температурах T <200 К тангенс потерь $\tan \delta$ растёт, особенно сильно для x=0.49. В окрестности 260-360 К на зависимостях $\tan \delta(T)$ для пленок с разными x наблюдается минимум. Необходимо отметить, что наибольший рост $\tan \delta(T)$ при низких

температурах и наиболее глубокий минимум при $T=300~\mathrm{K}$ наблюдается для плёнок при х=0.49 с гранулированной структурой и перколяционными областями разных размеров. Амплитуда минимума максимальна для двухслойных плёнок с композитным слоем при х=0.49, обладающей гранулированной структурой с большими перколяционными области разных размеров, хаотически разбросанными по всему объёму плёнки. Положение этого минимума неравномерно смещается в сторону высоких температур от 300 К до 340 К при уменьшении х от 0.84 до 0.47. Анализ поведения $\tan \delta(T)$ на низких частотах показывает, что наибольший вклад в импеданс двухслойной плёнки вносит композитный слой с х=0.49 при T=300 K. С ростом частоты до 1 MHz поведение температурных зависимостей $tan\delta(T)$ меняется значительно. Минимум на зависимостях tan $\delta(T)$ при 280-350 К практически исчезает. Для плёнок с концентрацией x < 10.7 наблюдается слабый рост $\tan \delta$ с температурой. Для двухслойной плёнки с большой концентрацией (x=0.84) наблюдается уменьшение модуля tan δ с температурой до 250 К. Анализ $tan\delta(T)$ показывает, что концентрация металла x оказывает значительно влияние на поведение $\tan \delta(T)$, при низких температурах и высоких частотах, а наибольший вклад в импеданс вносит композитный слой с концентрацией x = 0.84.

Выявлено, что концентрация металлического сплава в композитном слое оказывает значительное влияние на температурные и частотные зависимости вещественной и мнимой частей импеданса. Наибольшее влияние на вещественную часть импеданса и тангенс угла потерь двухслойных плёнок оказывает композитный слой, для которого характерна гранулированная структура. Рассчитаны температурные зависимости показателя степени для функции мнимой компоненты импеданса от частоты. На основе анализа температурного поведения был сделан вывод, что температурное поведение n(T) двухслойной плёнки при больших концентраций (x > 0.7) в основном определяется лавсановой плёнкой и наибольший вклад в поведение n(T) вносят плёнки с гранулированной структурой.

Исследования выполнены за счёт гранта Российского научного фонда, проект № 25-72-20063

- [1] М.П. Ласёк, Л.Н. Котов, Ю.Е. Калинин, А.В. Ситников, Физика твёрдого тела, 66 (12), 2129 (2024). DOI: 10.61011/FTT.2024.12.59577.6564PA
- [2] Leonid Kotov, Michail Lasek, Vladimir Vlasov, Yuri Kalinin, Alexander Sitnikov, Vasily Temnov, In IEEE International Conference on Next Generation Electronics (NEleX 2023) | 979-8-3503-1908-8/23/\$31.00
 ©2023 IEEE | DOI: 10.1109/NELEX59773.2023.10421632
- [3] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (John Wiley & Sons, Hoboken, New Jersey, 2018), 595 p.

Исследование состава, параметров ферромагнитного резонанса, магнитных свойств композитных металл-диэлектрических плёнок

Гаврилюк С.И., Котов Л.Н.

Сыктывкарский государственный университет, Сыктывкар, Россия e-mail: Gavrilyuk-SI@yandex.ru

Интерес к изучению металл-диэлектрических композитных плёнок постоянно растёт из-за их необычных свойств, таких как гигантское магнитосопротивление и аномальный эффект Холла. Исследование влияния концентрации металлического сплава х на проводимость и параметры ферромагнитного резонанса (ФМР) в металл-диэлектрических композитных плёнках является актуальной задачей материаловедения и физики конденсированного состояния [1-3]. Этот вопрос становится все более значимым в контексте развития современных технологий, таких как микроэлектроника, нанотехнологии специализированные функциональные покрытия. Металл-диэлектрические композитные плёнки представляют собой уникальный класс материалов, объединяющих в себе свойства металлов, диэлектриков и полупроводников, которые могут приобретаться при изменении концентрации металлического сплава и методов напыления. Ферромагнитный резонанс представляет собой эффективный метод для изучения микро - и наноструктуры и магнитных свойств пленок. В данной работе исследованы магнитные концентрационные зависимости удельного электрического свойства, сопротивления и параметров (ширины и положения линии) ФМР композитных плёнок с разными металлическими сплавами и диэлектриков (CoFeB+SiO₂) и (CoTaNb+MgO) и найдена взаимосвязь этих параметров и характеристик.

Напыление плёнок осуществлялось на лавсановый лист с размерами 210×295 мм² методом ионной бомбардировки мишеней из металлического сплавов Co₈₄Nb₁₄Ta₂, Fe_{0.36}Co_{0.44}B_{0.2} и диэлектриков SiO₂, MgO [1,2]. Композитные плёнки получались в атмосфере аргона, а мишени бомбардировались в основном более лёгкими ионами аргона Полёт выбитых из мишеней металлических и диэлектрических частиц и движущихся в атмосфере азота приводил к тому, что поверхность частиц покрывалась шубой из молекул азота. Это приводило к созданию композитных плёнок с гранулированной структурой даже за областью [1]. Исследования химического состава осуществляется посредством персонального компьютера, на котором установлено программное обеспечение AZTEC (Oxford Instruments), позволяющее управлять микроскопом.

В микроскопе применяется метод рентгеновской энергодисперсионной спектрометрии - аналитический метод элементного анализа твёрдого вещества, базирующийся на анализе энергии эмиссии его рентгеновского спектра, вариант рентгеноспектрального анализа. Измерения концентрации металлического сплава композитных плёнок проводились на сканирующем TESCAN MIRA3 LMH. Измерения электронном микроскопе электрического сопротивления плёнок проводились четырехзондовым методом при помощи универсального вольтметра Е6-24. ФМР параметры плёнок были вычислены на основе анализа магнито-полевых резонансных спектров, полученных с использованием радиоспектрометра РЭ 1306 [2]. Во время эксперимента, постоянное и переменное магнитное поле с частотой 9.4 ГГц, лежали в плоскости плёнки и были взаимно перпендикулярно друг Для получения изображений рельефа поверхности пленок и применялся магнитно-фазового контраста (МФК) микроскоп (ACM) NTEGRA PRIMA (NT-MDT, Россия), оснащённый кантилевером МFM10 [4]. На кантилевере МFM10 был установлен кремниевый зонд, покрытый тонким слоем магнитного сплава СоСт, толщиной 30 нм. Магнитный слой увеличивает чувствительность зонда к малым магнитным полям на поверхности пленок. Радиус кончика зонда обеспечивает пространственное составлял 20 нм, что разрешение магнитных структур около 20 нм. В ходе измерений частота внешней силы, действующей на кантилевер с зондом, настраивалась на частоту, близкой к собственной частоте кантилевера в диапазоне от 70 до 90 кГц.

Таким образом, в данном исследовании было изучено влияние концентрации металлических сплавов CoFeB, CoTaNb на проводимость и ФМР металл-диэлектрических параметры композитных (CoFeB+SiO2) и (CoTaNb+MgO) при комнатной температуре. Анализ проведённых исследований показал, что рост концентрации металлического сплава в плёнках приводит к уменьшению удельного сопротивления, резонансного поля и ширины линии ФМР. Ширина линии ФМР, как и удельное сопротивление в зависимости от концентрации х может иметь что возможно связано со структурными осцилляционный характер, плёнках Наибольший изменениями при ИХ напылении. намагниченности с увеличением x, наблюдается для пленок с гранулярноперколяционной структурой, для которых с ростом х увеличивается объём перколяционных или областей с большой концентрацией металлических частиц.

Исследование выполнено за счёт гранта Российского научного фонда (проект №21-72-20048).

[1] Котов Л.Н., Уткин А.А., Калинин Ю.Е., Ситников А.В. Магнитные, проводящие и магнитопроводящие свойства композитных плёнок (CoFeB+SiO2+N2) в интервале температур 2-400 К и магнитных полей

- 0, 1 и 5 Тл // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». 2023. Т. 15, № 4. С. 85-92
- [2] Котов Л.Н., Ласёк М.П., Турков В.К., Холопов Д.М., Власов В.С., Калинин Ю.Е., Ситников А. В. Ферромагнитный резонанс в композитных пленках металл—диэлектрик и металл—углерод // Известия РАН. Серия Физическая, − 2020. − Т. 84, № 9. − С. 1255-1257.
- [3] Leonid Kotov, Vladimir Vlasov, Pavel Kovalev, Alexander Utkin, Yuri Kalinin, Alexander Sitnikov, Vladimir Ustygov. Ferromagnetic Resonance in Nanocomposite MetalDielectric Films With Different Types of the Structure // 2023 IEEE International Conference on Next Generation Electronics (NEleX 2023). 979 -8-3503-1908-8/23/\$31.00 ©2023 IEEE.
- [4] Kotov L. N., Utkin A. A., Semyashkin I. V., Kalinin Yu. E. and Sitnikov A. V. // Bull. RAS: Physics. 2025. V. 89. No.4. P. 516.

Прозрачные проводящие слои на основе оксида индия с высокой подвижностью свободных носителей заряда

Ахмедов А.К., Асваров А.Ш., <u>Мурлиев Э.К.</u> Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала, Россия

Тонкопленочные прозрачные электроды на основе широкозонных оксидных материалов (TCO-transparent conductive характеризующиеся высокой электрической проводимостью и высокой оптической прозрачностью в видимом диапазоне спектра являются неотъемлемой частью различных оптоэлектронных устройств [1,2]. При этом для большинства приложений предпочтительнее, чтобы высокая проводимость достигалась за счет увеличения подвижности носителей заряда, а не их концентрации, так как способствует расширению используемого диапазона спектра в сторону ближнего ИК диапазона. Известно, что в вырожденных полупроводниках, каковыми являются слои TCO, при концентрации носителей на уровне $10^{20}~{\rm cm}^{-3}$ и более, основной вклад в снижение их подвижности (свыше 80%) вносят два механизма рассеяния: рассеяние на межзеренных границах (МЗГ) и рассеяние на [3]. Поэтому, ионизированной примеси ДЛЯ получения поликристаллических слоев ТСО с высокой подвижностью в равной степени важно - как снижение потенциальных барьеров на МЗГ, так и минимизация рассеяния на примеси. Для снижения рассеяния на МЗГ необходимо принять меры к обеспечению высокой однородности осаждаемых слоев, подавлению процессов формирования самостоятельных барьерных фаз на границах зерен. В то же время, для снижения рассеяния необходимо использовать материалы обеспечивающие достижение высокой концентрации носителей заряда при минимальном ее внесении.

В настоящей работе исследовано влияние температуры синтеза и содержания кислорода в составе рабочего газа на структуру и свойства слоев в системе IWO (In₂O₃:W). Все рассматриваемые слои были получены методом высокочастотного магнетронного распыления на установке барабанного типа, оснащенной узлом нагрева и позиционирования подложек с индивидуальным заданием температуры каждого из четырех держателей подложек [4]. Распыляемая мишень была получена методом искрового плазменного спекания порошковой смеси оксидов индия и вольфрама в весовом соотношении 99/1. Осаждение слоев при происходило в едином цикле, одновременно на четыре подложки, находящиеся при различной температуре: 50°C, 100°C, 200°C и 300°C. Толщина слоев составляла около 400 нм.

На рис. 1. приведены SEM – микрофотографии сколов слоев, синтезированных в различной газовой атмосфере при температуре

подложек 50°C и 300°C. Можно видеть, что в общем случае слои, синтезированные при 50°C характеризуются более гладкой морфологией, по отношению к слоям, синтезированным при 300°C, причем с ростом содержания кислорода в «горячих» слоях уменьшается размер структурных элементов, что связано с уменьшением длины миграции осаждаемых атомов на поверхности роста.

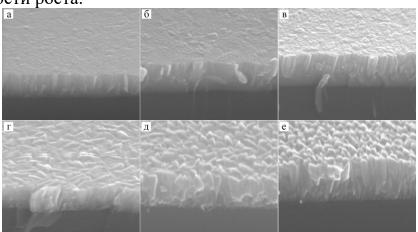


Рис. 1. SEM — микрофотографии сколов слоев IWO, синтезированных при температуре подложек 50° C (а, б, в) и 300° C (г, д, е) в атмосфере чистого аргона (а, г), газовой смеси Ar/O₂ в соотношении 99.8/0.2 (б, д) и газовой смеси Ar/O₂ в соотношении 99.8/0.4 (в, е).

На рис.2 приведены температурные зависимости электрических характеристик слоев IWO, синтезированных в различной газовой атмосфере.

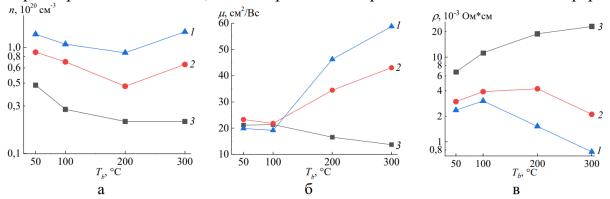


Рис.2 Температурные зависимости электрических характеристик слоев IWO, синтезированных в различной газовой атмосфере: а – в атмосфере чистого аргона, б – в газовой смеси Ar/O_2 в соотношении 99.8/0.2, в – в газовой смеси Ar/O_2 в соотношении 99.6/0.4

Можно видеть, что с ростом температуры подложек до 200° С во всех слоях наблюдается незначительное снижение концентрации свободных носителей заряда. При дальнейшем увеличении температуры подложек до 300° С, характер зависимости становится разнонаправленным - в слоях, полученных при распылении в чистом аргоне и смеси Ar/O_2 (0.2%), наблюдается рост концентрации, а в слоях, полученных в атмосфере Ar/O_2 (0.4%,) продолжается снижение, но уже с меньше интенсивностью.

Подвижность носителей заряда в интервале температур 50 – 100°C остается практически неизменной. Однако при увеличении температуры

подложек в слоях, осажденных в атмосфере чистого аргона и смеси Ar/O₂ (0.2%) наблюдается рост подвижности, в то время как в слоях, осажденных в смеси $Ar/O_2(0.4\%)$ ее снижение. Такой характер зависимостей может быть конкурирующих процессов. обусловлен влиянием нескольких полагаем, что в данном случае конкурирующими являются процесс окисления примеси на границах зерен и процесс замещения ионами примеси катионов в узле решетки матричного оксида. Причем ключевую роль в этих наряду c температурой синтеза играет металл/кислород на поверхности роста, В значительной степени определяющее длину миграции осаждаемых атомов и как следствие структуру и свойства слоев. Мы полагаем, что при относительно низких температурах подложек ввиду ограниченной растворимости атомов примеси (W) в матричном оксиде (In₂O₃) примесь преимущественно локализуется на границах зерен в самостоятельной барьерной фазе в виде нейтральных комплексов W - O_x [5]. При этом основным источником свободных электронов в низкотемпературных слоях являются кислородные вакансии и, поэтому, увеличение содержания кислорода на поверхности роста приводит к снижению их концентрации. С ростом температуры синтеза растет длина миграции осаждаемых атомов на поверхности роста и как следствие эффективность замещения ионами примеси W6+ ионов индия In3+ в узлах решетки In_2O_3 [6,7]. Этот процесс также очень чувствителен к содержанию кислорода в составе рабочего газа. С увеличением температуры синтеза до 300°C этот процесс становится доминирующим при осаждении в атмосфере чистого аргона и смеси Ar/O₂ (0.2%), способствуя росту концентрации свободных электронов. При этом растет и подвижность носителей заряда, что связано с заполнением ловушек на границах зерен и, как следствие, снижением барьеров на МЗГ [8]. Однако, при дальнейшем увеличении содержания кислорода до 0.4% на первый план выходят окисления примеси на МЗГ и снижения собственных кислородных вакансий, что подтверждается снижением как концентрации, так и подвижности носителей заряда.

В таблице 1 приведены сравнительные электрические и оптические характеристики слоев IWO и ITO полученных при 300° C в атмосфере чистого аргона. Здесь важно отметить, что коэффициент качества TCO, определяемый как $\phi = T^{10}_{av}/R_{sq}$ (Tav —средний коэффициент пропускания в выбранной области спектра, R_{sq} — поверхностное сопротивление), в видимом диапазоне спектра (400 - 700нм) в слое ITO в 4.5 раза выше чем в слое IWO. Однако в расширенном диапазоне (400-2500нм), этот коэффициент более чем в 576 раз выше в слое IWO.

Таким образом можно констатировать, что если для формирования прозрачных электродов в приложениях, предназначенных для работы в видимом диапазоне спектра предпочтительно использование слоев ITO, то для устройств, использующих более широкий спектральный диапазон с

захватом ближней ИК – области, в частности для солнечных элементов, выголнее использовать слои IWO.

Таблица 1. Сравнительные характеристики слоев ITO и IWO, синтезированных при

температуре подложек 300°C в атмосфере чистого аргона.

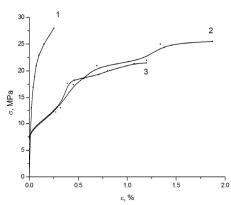
Слой	R _{sq} . Ом/кв	T _{av} , % (400 -700нм)	$T_{ m av},\%$ (400 -2500нм)	Ф (400 –700нм) × 10 ⁻³ Ω ⁻¹	Ф (400 –2500нм) × 10 ⁻³ Ω ⁻¹
ITO	4.9	89.26	39.16	65.5	0.017
IWO	19.5	88.23	84.73	14.7	9.8

Библиографический список:

- [1] Stadler, A. Transparent conducting oxides—an up-to-date overview. Materials (Basel) 5, pp. 661–683 Apr. 2012.
- [2] Calnan and A. N. Tiwari, "High mobility transparent conducting oxides for thin film solar cells," Thin Solid Films, vol. 518, pp. 1839–1849, Jan. 2010.
- [3] Bikowski, A.; Ellmer, K. Analytical Model of Electron Transport in Polycrystalline, Degenerately Doped ZnO Films. J. Appl. Phys. 2014, 116 (14), 143704.).
- [4] A.K. Akhmedov, A. Sh. Acvarov, A.E. Muslimov, V.M. Kanevsky "A Multi - Position Drum - Type Assembly for Simulaneos Film Deposition at Different Temperatures in a Single Sputter Cicle – Application to ITO Thin Films" Coatings, vol. 10. 1076. Nov. 2020,
- [5] Txintxurreta, J.; G-Berasategui, E.; Ortiz, R.; Hernández, O.; Mendizábal, L.; Barriga, J. Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings 2021, 11, 92.
- [6] Jun Ho Kim, Yong-Hee Shin, Tae-Yeon Seong, Seok-In Na and Han-Ki Kim. Rapid thermal annealed WO3 - doped In2O3 films for transparent electrodes in organic photovoltaics. J. Phys. D: Appl. Phys. 45 (2012) 395104 (6pp)
- [7] P. F. Newhouse, C.-H. Park, D. A. Keszler, J. Tate, and P. S. Nyholm High electron mobility W-doped In2O3 thin films by pulsed laser deposition. September 2005. Applied Physics Letters 87(11)
- [8] Nicolas Sommer, Jürgen Hüpkes, Uwe Rau. Field Emission at Grain Boundaries: Modeling the Conductivity in Highly Doped Polycrystalline Semiconductors. PHYSICAL REVIEW APPLIED 5, 024009 (2016)

Об изменении физико-механических свойств пластически деформированного германия

Велиханов А.Р.


Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: art677@mail.ru

Изменение структуры полупроводника вызывает изменение концентрации носителей заряда, а это, в свою очередь, вызывает изменение различных физических свойств. Показано, например, что пластическая деформация германия и кремния увеличивает их сопротивление и уменьшает время жизни неосновных носителей заряда [1]. Однако в зависимости от типа проведенной пластической деформации эти свойства могут отличаться. В связи с этим, представляется интересным выяснить влияние различных методов пластического деформирования на изменения свойств монокристаллов германия и его механических удельного сопротивления.

Исследовались монокристаллы германия р-типа удельным сопротивлением, 2,5 Ом-см. Для сжатия использовались образцы в виде столбиков размерами 12×9×5 мм, ограниченных плоскостями [111], [110], [112]. Деформация осуществлялась в вакууме вдоль направления [110] с прохождением одновременным нагревом В печи И электрического тока через образец, деформируемый под нагрузкой, возрастающей со скоростью 0,05 МПа/с, при температуре 590°С. Плотность тока, проходящего через образец монокристалла германия, составляла i =200 А/см². Метод сжатия монокристалла Ge в условиях его нагрева печью сопротивления получил название горячей пластической деформацией (ГПД). А метод, в котором сжатие Ge осуществляется одновременным нагревом в печи сопротивления и прохождением электрического тока через монокристалл назван комбинированной пластической деформацией (КПД). После КПД для измерений электрических свойств приготовлялись образцы размером 9×3×1,5mm³. Перед нанесением контактов образцы полировались и тщательно промывались. В качестве контактов применялся индий. На приготовленных таким образом образцах измерялись электропроводность σ и коэффициент Холла R_x в интервале от азотных до комнатных температур с помощью обычной методики постоянного тока.

В настоящей работе изменения формы кривых сжатия для германия изучались при температурах достигаемых в условиях внешнего нагрева в печи и нагрева электрическим током (метод КПД), так и без нагрева электрическим током (метод ГПД). На рис.1 приведена зависимость механического напряжения σ от степени пластической деформации ε . Данная диаграмма получена в динамическом режиме деформирования.

Метод ГПД применимый в данной работе, для германия р - типа, показал, что при равных с методом КПД значении температуры деформирования (t)590°C) давления, практически невозможно добиться заметной величины пластической деформации (рис.1). На диаграмме деформирования заметна более высокая пластичность германия температурах при деформирования 580°C и 590°C в условиях КПД (рис.1, кривые 2,3). Плавную форму кривой 2, полученную

для германия, можно связать с постепенным распространением деформации по всему объему кристалла [2]. Из сравнения приведенных кривых видно, что при достижении степени деформации $\varepsilon = 0.2\%$ германия р — типа, приложенное механическое напряжение у КПД (кривая 3) оказывается в 6 раз меньше, чем у ГПД (кривая 1).

На рис.2 представлена температурная зависимость удельного сопротивления недеформированного и деформированных образцов монокристаллов германия в условиях ГПД и КПД в диапазоне температур $80-320^{\circ}{\rm K}.$

В температурной области меньше 250°K увеличением величины деформации, удельное сопротивление уменьшается всех образцов, ДЛЯ подвергнутых, как ГПД (кривые 4,5), (кривые КПД 2,3). так недеформированном образце интервале температур 80 – 320°К удельное сопротивление сильнее всего зависит от температуры. Увеличение сопротивления удельного недеформированного образца ПО сравнению деформированными образцами в таком случае связывается в первую очередь c уменьшением концентрации основных носителей в этом температурном интервале. Из рис. 2 можно видеть, что метод ГПД заметно

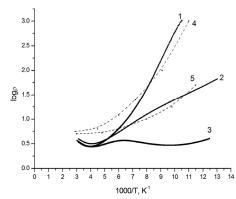


Рис.2. Температурные зависимости удельного сопротивления германия р-типа при различных степенях и методах деформирования: 1-недеформированный образец, 2-1,7% (КПД), 3-3,1% (КПД), 4-4,4% (ГПД), 5-9,5% (ГПД).

увеличивает рост удельного сопротивления (кривые 4,5), по сравнению с методом КПД (кривые 2,3), несмотря на высокие значения величин

деформации. Уменьшение удельного сопротивления у образцов подвергнутых КПД связывается как с уменьшением концентрации носителей, так и с увеличением их подвижности, но уже при температурах $90-330^{\circ}{\rm K}$

Таким образом, метод КПД в отличие от метода ГПД при равных величинах температуры и давления, вносит наибольший вклад в увеличение пластичности германия. Из рис.2 можно видеть, что с увеличением плотности дислокаций величина удельного сопротивления германия обоих уменьшается при методах пластического деформирования. Концентрация данного полупроводника, как дырок показывают дополнительные измерения, растет с ростом степени деформации, что и указывает на увеличение плотности вводимых дислокаций. В области температур T < 250°К кривая 1 для недеформированного германия и кривые 2 и 3 для германия со степенями деформации $\varepsilon_l = 1.7 \%$ и $\varepsilon_2 = 3.1\%$, подвергнутого КПД, имеют экспоненциальный вид с энергиями активации соответственно $E_1 = 0.03$ эв, $E_2 = 0.02$ эв и $E_3 = 0.01$ эв. С увеличением плотности дислокаций величина энергии активации Е уменьшается, что ДЛЯ данного легированного проводника. Значительное уменьшение удельного сопротивления образцов германия, подвергнутых КПД по сравнению с недеформированным образцом, при низких температурах связанное, главным образом, с возрастанием концентрацией носителей заряда – дырок, указывает на возникновение акцепторных центров [3]. Поскольку в процессе КПД монокристаллов германия р-типа проводимость осуществляется по «дислокациям» в отличие от метода ГПД, то и в низкотемпературную проводимость дислокации также вносят свой вклад. Поэтому с ростом степени деформации проводимость германия ртипа будет расти.

- [1] В.Б. Шикин, Ю.В. Шикина, УФН 165, 887 (1995).
- [2] А.А. Урусовская, В.Г. Говорков. Кристаллография, 10, 525. (1965).
- [3] И.А. Случинская, Основы материаловедения и технологии полупроводников, Москва (2002).

Связь между уровнем допирования и температурным коэффициентом электросопротивления для наноструктурированных керамик YBCO

<u>Гаджимагомедов С.Х.</u>, Палчаев Д.К., Рабаданов М.Х., Мурлиева Ж.Х. Дагестанский государственный университет, Махачкала, Россия e-mail: darkusch@mail.ru

Показана и обоснована линейная связь уровня допирования (p) с температурным коэффициентом электросопротивления (TCR) для 20 наноструктурированных сверхпроводящих керамик на основе YBCO [1]. Эта зависимость не нарушается при различных: технологических режимах получения нанопорошков и керамики из них; пористости и дисперсности частиц керамик; средних значений кислородного индекса и типа проводимости в нормальной фазе (металлического или полупроводникового).

Отличительной особенностью этих керамик является то, что основная сверхпроводящая фаза YBCO при наноструктурировании распадается на сверхпроводящие фазы с различной кислородной стехиометрией. Сверхпроводящая фаза YBCO, характеризуемая $T_c \approx 92$ K, при наноструктурировании, как правило, распадается на фазы с различной кислородной стехиометрией (от ~ 6.9 до ~ 6.7), что приводит к уширению интервала ΔT_c . Распад основной сверхпроводящей фазы предполагает, что каждая из них обладает структурой и свойствами, отличными от других фаз.

Установлено подобие зависимостей среднего уровня допирования p и среднего значения TCR от ΔT_c для этих керамик. Это приводит к линейной связи между TCR и p, независимо от технологических режимов получения нанопорошков, спекания керамик, их пористости и дисперсности частиц, а так же содержания кислорода, изменяющего характер проводимости. Она может быть полезна при разработке технологий получения наноструктурированных ВТСП с заданными характеристиками для создания компонент функциональной электроники. Представляется возможность оценок значения p или TCR, для наноструктурированных керамик YBCO, по одному из известных параметров. Низкие значения критического тока в нанокерамике, наряду с отсутствием градиента потенциала в этих материалах, предоставляют возможность реализации процессов передачи электрических сигналов при исчезающе малом значении магнитной индукции.

Показана необходимость учета слетеровских представлений о формировании элементарных зарядовых возбуждений в конденсированной среде и определяющей роли изменения параметров решетки на формирование проводимости YBCO как при изменении содержания кислорода, так и при изменении температуры. Это может привести к реалистичной теоретической модели проводимости в нормальном состоянии и дать новый импульс к установлению природы сверхпроводимости ВТСП.

[1] S. K. Gadzhimagomedov et al., of Physics and Chemistry of Solids, 168, 110811 (2022)

The structural and optical study of the n-GaAs_{1-X}P_X/GaAs structures

Aghaliyeva S.T., Mammadov T.S., Shirinov M.M.

Institute of Physics Ministry of Science and Education of Azerbaijan, Baku, Azerbaijan e-mail: saghaliyeva@yahoo.com

The GaAs_{1-x}P_x/GaAs (x=0.12 and 0.29) structures were grown on Si-GaAs (100) substrate by solid source molecular beam epitaxy (MBE) with continuously growth (CG) method. Grown sample was characterized using high-resolution x-ray diffraction (HRXRD) Photoluminescence (PL) and spectroscopic ellipsometry (SE) measurements. The range of lattice parameters in the graded epilayer and Phosphorous composition were determined from the HRXRD rocking curve simulation. The P composition was confirmed by a room temperature (300K) PL measurements and compared with HRXRD result. Also, the critical energy points of the interband transitions were determined using SE.

The growth conditions such as continuously growth interrupt, continuously growth and graded growth are important to obtain the best quality phosphorous based heterostructure. In this study, two $GaAs_{1-x}P_x$, x=0.12 (A) and x=0.29 (B) samples have been grown by VG-Semicon V80H-MBE solid source system on (100) n-GaAs epiready substrate with continuously growth (CG) method. We used cracker cell for As_2 and GaP compound source for P_2 .

In HRXRD analysis, the LED structures have two $GaAs_{1-x}P_x$ epilayers (1000nm) over GaAs buffer (500nm) and c-oriented GaAs substrate.

In the GaAsP epilayers, the x content has a linear graded value and it changes from 0 to 10.25% for sample A and 0 to 27.68% for sample B. Convex region on GaAsP peak has about a range between 33.148° and 33.433° for sample A, 33.240° and 33.744° for sample B, and this range determines the lattice parameter range of the graded GaAs_{1-x}P_x among 5.5512 and 5.6255 Å for sample B. The content and lattice parameter were measured by using peak positions fromVegard's law. Using 325 nm He-Cd laser for light source with the Jobin Yuvon Triax 500 PL system, the room temperature PL spectra of GaAs_{1-x}P_x/GaAs p-n junction junction structure is investigated. Considering the dependency of the energy gap and the alloy composition at room temperature (300K), P content (x) can be calculated using an equation $E_g(x) = 1.42 \text{ eV} + 1.16 \text{ eV} + x^2 0.20 \text{ eV}$. In this case, P content of the samples A and B were obtained as x=0.11 and x=0.29, respectively. These values were compared with HRXRD.

Also, we investigated the changing critical energy points with the alloy compositions using SE. The pseudodielectric function ($\varepsilon = \varepsilon_r + \varepsilon_i$) for samples A and B which are grown with two different P compositions were measured by SE (Jobin Yvon, in 0.6-4.7 eV photon energy region with an energy resolution of 0.01eV) at angle of incidence in 70^0 at the room temperature.

In this case, the amplitude and energy positions of the E_0 , E_1 , $E_1 + \Delta_1$ and E_2 which is correspond to interband critical points of the semiconductor structure

have changed with compositions of the structures. When P composition is increased, all critical energy points have shifted blue range. For example, E_1 energies for sample A and B are 2.98 eV and 3.27 eV, respectively. While the critical point (E_1) for interband transition is 2.98 eV, the spin-orbit split energy in this band of the sample A is about 0.13 eV. Band gap energies of the samples from PL and SE are good agreement.

Эволюция токов утечки в пленочной структуре BiFeO₃/TiO₂(NTs) после сброса поляризующего напряжения

<u>Гаджиев Г.М.</u>, Рамазанов Ш.М., Абакарова Н.С., Эфендиева Т.Н. Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: Hadzhygm@mail.ru

В последнее время структуры металл-диэлектрик (полупроводник)-металл вновь привлекли внимание исследователей по всему миру после провозглашения концепции мемристорного кроссбара, как альтернативы архитектуре фон Неймана [1-3]. Мемристорный (элемент памяти наноразмерного масштаба между двумя электродами) кроссбар — система параллельных нанопроводов, пересекающая другую такую систему под углом, где, в узлах между контактами, размещены сами мемристоры. Благодаря способности мемристора одновременно проявлять свойства энергонезависимого запоминающего устройства, логического устройства и быстродействующего переключателя, стало возможным изготовление процессора нового поколения, в которой проблема эффекта «бутылочного горла фон Неймана» легко обходится.

Среди тонкопленочных оксидов переходных металлов, рассматриваемых в качестве перспективных материалов при изготовлении мемристоров, особое место занимает полупроводник (диэлектрик) BiFeO₃ (BFO). BFO кроме выдающихся мультиферроидных свойств - высокие значения температур магнитного $T_N = 370$ °C и сегнетоэлектрического $T_c =$ 820 °C упорядочения, ранее демонстрировал также и яркие свойства резистивного переключения. В ряде работ показано [4,5] что для усиления магнитоэлектрического эффекта, улучшения электрофизических электрохимических свойств пленок на основе BFO можно использовать буферные слои (в частности, нанотубулярный TiO₂(Nt)), что расширяет возможности практического применения этих материалов.

Токи релаксации, которые возникают тонкопленочных сразу сегнетоэлектриках после включения/выключения напряжения оказывают существенное влияние на работу элементов памяти, сильно зависят от процессов поляризации и деполяризации, приводя, иногда, к заметной модификации J-V зависимостей. Время релаксации, определяемая из зависимости J(t) после подачи/сброса напряжения на образце является важным параметром активных диэлектриков. На ее значение влияют степень совершенства структуры материала, наличие ловушек захвата носителей тока и состояние границы раздела фаз пленочной структуры и может достигать величин от долей секунды до нескольких минут. Соответственно анализ кривой J(t) предоставляет удобный инструмент для характеризации образца на предмет выяснения экстремальных условий эксплуатации элементов памяти при которых наступает деградация пленок.

В работе будут обсуждаться влияние величины $(30-55\ V)$ и времени воздействия $(0.1-4\ sec)$ поляризующего напряжения на токи релаксации, измеренные в первые несколько секунд после ее сброса при измерительных напряжениях характерных для условий эксплуатации элементов памяти в области $0.1-2\ V$ (рис. 1).

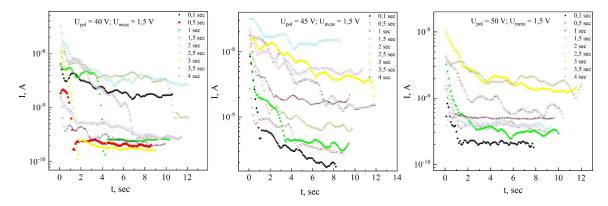


Рис. I Влияние времени выдержки (указаны на рисунках справа) напряжения поляризации U_{pol} на токи утечки в образце, измеренные в начальный момент времени после сброса U_{pol} до измерительного значения U_{meas} .

- [1] D.B. Strukov, G.S Snider, D. R. Stewart, R.S Williams, Nature letters **453**, 80 (2008).
- [2] J. Borghetti, G.S. Snider, P.J. Kuekes et al, Nature Letters 464, 873 (2010).
- [3] J. Yang, D.B. Strukov and D.R. Stewart, Nature Nanotechnology **8**, 13 (2013).
- [4] F. Orudzhev, S. Ramazanov, D. Sobola, A. Isaev, C. Wang, A. Magomedova, M. Kadiev, K.Kaviyarasu, Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes:Synthesis, Characterization and Photoelectrocatalytic Properties, Nanomaterials 10, 2183 (2020).
- [5] S. Ramazanov, F. Orudzhev, G. Gajiev, V. Holcman, R.S. Matos, H.D. da Fonseca Filho, S. Ţ ălu, D. Selimov. Local electrical characteristic of memristor structure in a high-resistance state obtained using electrostatic force microscopy: Fractal and multifractal dynamics of surface, Applied Surface Science 9, 158863 (2023).

Спиновый нематик с анизотропией «легкая ось» во внешнем магнитном поле

Космачев О.А., <u>Фридман Ю.А.</u>, Фадеева Е.О., Ярыгина Е.А. Крымский федеральный университет им. В.И.Вернадского, Симферополь, Республика Крым, Россия e-mail: yuriifridman@gmail.com

Состояние спинового нематика является одним из наиболее необычных состояний магнитоупорядоченных структур. Его особенностью является равенство нулю среднего магнитного момента (на узле), но сохраняющийся при этом магнитный порядок [1]. При этом, в отличие от стандартного упорядочения, связанного c нарушением относительно обращения времени, в спиновом нематике спонтанное вращательной симметрии определяется нарушение мультипольным упорядочением. Так, для магнетика со спином единица это мультипольное упорядочение определяется бесследовым тензором $Q_{\alpha\beta} = \frac{1}{2} \left(S_{\alpha} S_{\beta} + S_{\beta} S_{\alpha} \right) - \delta_{\alpha\beta} \left[S(S+1)/3 \right]$. Здесь $S_{\alpha} (\alpha = x, y, z)$ - проекции оператора спина. [2-20]. Средние значения компонент этого тензора квадрупольных моментов определяют параметры порядка. Геометрическим образом спинового нематика, в спиновом пространстве, является квадрупольный эллипсоид, с направлениями главных осей, выбранных таким образом, чтобы $\langle S_i S_k + S_k S_i \rangle = 0$ при $i \neq k$, i, k = 1, 2, 3, и полуоси которого равны $\langle S_1^2 \rangle$, $\left< S_2^{\ 2} \right>$ и $\left< S_3^{\ 2} \right>$. Этот геометрический образ, собственно, и определил термин «спиновый нематик», по аналогии с обычным нематиком. Такого рода состояния с мультипольным упорядочением могут реализивываться в сильно коррелированных магнитных материалах, во фрустрированных магнетиках со спином ½, в которых состояние спинового нематика может возникать из-за корреляции спинов на различных узлах, а также и в ультрахолодных атомарных газах.

При этом, возникает вопрос: а будет ли устойчива нематическая фаза при включении внешнего магнитного поля? Влияние магнитного поля на устойчивость нематических состояний активно исследуется в магнетиках со спином магнитного иона S=1/2, в которых нематическое состояние характеризуется разноузельными спиновыми средними. Однако влияние магнитного поля на фазовые состояния негейзенберговского магнетика с биквадратичным обменным взаимодействием приводит к новым, необычным результатам.

В качестве исследуемой системы рассмотрим негейзенберговский ферромагнетик с одноионной анизотропией типа «легкая ось» и спином магнитного иона S=1. Гамильтониан такой системы имеет вид:

$$H = -\beta \sum_{n} (S_{n}^{z})^{2} - \frac{1}{2} \sum_{n_{1} \neq n_{2}} \left[J(n-n')(\vec{S}_{n}\vec{S}_{n'}) + K(n-n')(\vec{S}_{n}\vec{S}_{n'})^{2} \right],$$

где $\beta > 0$ - константа одноионной анизотропии типа «легкая ось», K > J > 0 - константы биквадратичного и билинейного обменных взаимодействий.

Рассмотрим вначале случай ориентации поля по легкой оси, т.е. $H \square OZ$. Включение внешнего поля, параллельного оси анизотропии, приводит к появлению магнитного момента, т.е. $\left\langle S^z \right\rangle \neq 0$. Энергия основного состояния имеет вид:

$$E_{gs} = -\frac{K_0}{3} - \beta - H \cos 2\alpha + \frac{1}{2} (K_0 - J_0) \cos^2 2\alpha$$
.

Здесь α - параметр обобщённого u-v преобразования. Параметры порядка в

этом случае равны:
$$\left\langle S^{z}\right\rangle =\cos2\alpha=\frac{H}{K_{0}-J_{0}},\,q_{2}^{0}=1,\,q_{2}^{2}=\sin2\alpha$$
 ,

где
$$\left\langle \left(S^x\right)^2\right\rangle = \frac{1}{2}\left(1+\sin 2\alpha\right); \left\langle \left(S^y\right)^2\right\rangle = \frac{1}{2}\left(1-\sin 2\alpha\right); \left\langle \left(S^z\right)^2\right\rangle = 1.$$

Включение поля приводит к трансформации геометрического образа нематического состояния: бесконечно тонкий диск, лежащий в плоскости ZOY (при H=0) преобразуется в двухосный эллипсоид при $H < K_0 - J_0$. Состояние спинового нематика сохраняется в магнитном поле, вплоть до $H_c = K_0 - J_0$. При достижении критического поля H_c система переходит в парамагнитную фазу, а двухосный эллипсоид трансформируется в одноосный.

Теперь рассмотрим поведение легкоосного магнетика в поперечном внешнем поле, направленного вдоль оси ОХ. Гамильтониан такой системы имеет вид:

$$H = -H \sum_{n} S_{n}^{x} - \beta \sum_{n} \left(S_{n}^{z} \right)^{2} - \frac{1}{2} \sum_{n_{1} \neq n_{2}} \left[J(n-n') \left(\vec{S}_{n} \vec{S}_{n'} \right) + K(n-n') \left(\vec{S}_{n} \vec{S}_{n'} \right)^{2} \right].$$

Включение внешнего поля может привести к возникновению ненулевого магнитного момента, ориентация и величина которого будет определяться конкуренцией внешнего поля и одноионной анизотропии. Таким образом, предположим, что возникающий под действием магнитного поля магнитный момент выходит из базисной плоскости, и ориентирован под углом θ к оси OZ. Для простоты вычислений будем считать, что магнитный момент лежит в плоскости ZOX. Повернем систему координат вокруг оси OY так, чтобы направление магнитного момента совпало с осью OX. Энергия основного состояния в собственной системе координат имеет вид: $E_{gr.st} = -H \sin \theta \cos 2\alpha + \frac{1}{2} (K_0 - J_0) \cos^2 2\alpha + \frac{\beta}{2} \sin^2 \theta (1 - \sin 2\alpha)$.

2 2 Анализ энергии основного состояния позволяет определить выразить

Анализ энергии основного состояния позволяет определить выразить зависимость угла θ и параметра α от материальных констант системы

$$\sin \theta = -\frac{H}{\beta} \frac{\cos 2\alpha}{1 - \sin 2\alpha}, \sin 2\alpha = -\frac{H^2}{\beta (K_0 - J_0)}.$$

Этот результат не физичен, так как из вида параметров порядка в собственной системе координат $\langle S \rangle = \cos 2\alpha$, $q_2^0 = 1$, $q_2^2 = \sin 2\alpha$ следует, что намагниченность убывает с ростом поля. Таким образом, в случае направления внешнего поля вдоль оси ОХ среднее поле $\langle S \rangle$ направлено вдоль оси ОХ, и угловое нематическое состояние не реализуется, Полученный результат является достаточно неожиданным. Казалось бы, конкуренция легкоосной анизотропии и внешнего поля (перпендикулярного легкой оси), должно приводить к некоторой «угловой» спиновой конфигурации не только в случае большого билинейного обменного взаимодействия, И при большом биквадратичном но взаимодействии. Так, например, в негейзенберговском магнетике с одноионной анизотропией типа «легкая плоскость», находящемся во внешнем поле, перпендикулярном базисной плоскости, при большом обменном взаимодействии, биквадратичном реализуется нематическая фаза, в которой главная ось квадрупольного эллипсоида образует некоторый угол с направлением магнитного поля [2]. Чтобы понять возникающие различия в поведении магнетиков с анизотропиями «легкая ось» и «легкая плоскость», обратимся к рассмотрению ситуации в отсутствие внешнего поля. При H = 0 и $\langle S \rangle = 0$ одноионная анизотропия типа «легкая плоскость» ориентирует одноосный квадрупольный эллипсоид (бесконечно тонкий диск) в базисной плоскости, т.е. создает эффективную квадрупольных параметров порядка. При внешнего магнитного поля, перпендикулярного базисной плоскости, возникает конкуренция между эффективной анизотропией и магнитным полем, что приводит к реализации «угловой» нематической фазы. В рассматриваемом в данной работе случае, при H = 0 и $\langle S \rangle = 0$, легкоосная анизотропия не создает эффективной анизотропии квадрупольного эллипсоида (бесконечно тонкого диска). Это следует из того, что энергия основного состояния в отсутствие магнитного поля одинакова как при ориентации квадрупольного эллипсоида в плоскости ХОУ, так и при ориентации в плоскостях ZOX и ZOY. При включении внешнего поля, ориентированного параллельно оси OZ, возникает ненулевой магнитный момент, ориентированный по магнитному полю, и квадрупольный двухосный эллипсоид ориентируется так, что его главная ось параллельна также оси ОХ. Таким образом, в рассматриваемом нами случае, при $H \neq 0$ и биквадратичном обменном взаимодействии, большом «угловая» нематическая фаза не реализуется, а возникает состояние осевого нематика. [1] A. F. Andreev and V. I. Marchenko, Sov. Usp. Fiz. Nauk **130**, 39-63 (1980)

[2] O.A. Kosmachev, Yu. A. Fridman, E.A. Yarygina JMMM, **622**, 172958 (2025)

Исследование динамики кинков и локализованных волн в модели уравнения ϕ^4 с двумя протяженными примесями

Екомасов Е.Г., Фахретдинов М.И.

Уфимский университет науки и технологий, Уфа, Россия e-mail: fmi106tf@gmail.com

Уравнение ϕ^4 находит применение в таких разнообразных областях, квантовая теория поля, биофизика, как космология, конденсированного состояния и даже для описания процессов в графене [1]. Одним из его важных точных решений является кинк – уединенная волна, демонстрирующая частицеподобное поведение. Для реальных приложений уравнение ϕ^4 часто модифицируется путем введения пространственных неоднородностей потенциала, известных как примеси [1]. Ранее были подробно изучены случаи с одиночными точечными или протяженными примесями, показавшие их способность изменять динамику кинков, а также генерировать локализованные примесные моды. Однако исследование поведения кинков и локализованных волн в моделях с двумя или более протяженными примесями для уравнения ϕ^4 оставалось менее изученным по сравнению с моделью синус-Гордона. Наша работа направлена на восполнение этого пробела и рассматривает взаимодействие кинка уравнения двумя одинаковыми протяженными примесями прямоугольного вида, анализируя как возбуждение локализованных волн, так и динамику самого кинка.

Мы рассматривали уравнение ϕ^4 с пространственной неоднородностью потенциала K(x) в виде двух одинаковых протяженных примесей:

$$u_{tt} - u_{xx} + K(x)(u^2 - 1)u = 0,$$

где K(x) описывается функцией в виде двух одинаковых прямоугольных неоднородностей (примесей) с шириной W и глубиной ΔK , а также расстоянием d между примесями. Случай $\Delta K > 0$ соответствует притягивающей примеси (потенциальной яме), а $\Delta K < 0$ — отталкивающей примеси (потенциальному барьеру).

Результаты, полученные аналитическими и численными методами (методом прямых для уравнений в частных производных и дискретным преобразованием Фурье для частот), показывают сложное и богатое поведение системы: на двух притягивающих примесях возбуждаются долгоживущие локализованные волны бризерного типа. Эти волны демонстрируют сложную связанную динамику [2].

Обнаружены три возможных вида колебаний локализованных на примесях волн: синфазные, антифазные колебания и колебания в виде биений. Синфазные колебания характеризуются одинаковой амплитудой, фазой и частотой. Антифазные колебания имеют одинаковую амплитуду и частоту, но разные по знаку начальные фазы. Колебания в виде биений

проявляются, когда амплитуда каждой из локализованных волн практически падает до нуля, и происходит полный перенос энергии колебаний от одной примесной моды к другой.

Аналитически и численно показано наличие двух возможных частот для связанных локализованных колебаний. Эти частоты сильно зависят от расстояния между примесями d. С увеличением расстояния между примесями частоты сливаются в одну, соответствующую случаю одиночной примеси. Численно найденные частоты немного меньше аналитических значений, причем расхождение увеличивается с ростом параметра ΔK (т.е. с увеличением нелинейности).

Нами определены и описаны возможные сценарии динамики кинка с учетом резонансных эффектов [3]. Показано, что динамика кинка с двумя протяженными примесями содержит новые сценарии его динамики по сравнению со случаем одной протяженной примеси. Взаимодействие кинка с барьерами в основном носит упругий характер, хотя на кинке и возбуждается внутренняя мода колебаний. Взаимодействие кинка с ямой является неупругим, что связано с затратами энергии на возбуждение локализованных волн на примесях. На кинке при этом также возбуждается внутренняя мода колебаний, превращая его в воблинг-кинк [3].

Определены критические и резонансные начальные скорости движения кинка как функции от параметров примеси (W, ΔK) и расстояния d между ними. При запуске с критической начальной скоростью кинк проходит обе примеси, а при резонансных скоростях он отражается от примесей и движется в обратном направлении (резонансное отражение). Построена диаграмма возможных режимов динамики кинка в зависимости от начальной скорости и расстояния между примесями, имеющая «лепестковый» вид. Резонансное отражение, как правило, возникает на границах этих «лепестков».

- [1] P.Kevrekidis, J.Cuevas-Maraver, A Dynamical Perspective on the φ⁴ Model: Past, Present and Future, Berlin, Springer (2019).
- [2] М.И.Фахретдинов, Е.Г.Екомасов, Компьютерные исследования и моделирование 17, 3 (2025).
- [3] М.И.Фахретдинов, Е.Г.Екомасов, Известия вузов. ПНД **33**, 3 (2025).

Магнитные бризеры и солитоны как основа для создания генератора спиновых волн

Кабанов Д.К., Екомасов Е.Г.

Уфимский университет науки и технологий, Уфа, Россия e-mail: danya.kabanov.95@mail.ru

области Современные экспериментальные возможности нанотехнологий И магнитных измерений стимулируют углубленное динамики магнитных неоднородностей, особенно изучение мультислойных магнитных структурах, чья востребованность в различных приложениях неуклонно растет. Теоретический анализ одномерной ферромагнитных динамики ЭТИХ неоднородностей В мультислоях, собой периодическую последовательность представляющих различной толщины и с разными магнитными свойствами (в частности, анизотропией), показывает связь с задачей о взаимодействии солитонов уравнения синус-Гордона (УСГ) с примесями [1]. В [2] показано, динамика доменных границ в мультислойных структурах может приводить к устойчивых генерации локализованных солитонов, являющихся источниками спиновых волн.

В данной работе исследуется возможность создания генератора спиновых волн на основе магнитных бризеров, возбуждаемых в трехслойной ферромагнитной структуре. Установлено, что параметры слоев структуры напрямую влияют на характеристики генерируемых спиновых волн, позволяя контролировать их амплитуду и частоту. Особое внимание уделено применению метода авторезонанса с использованием слабого переменного магнитного поля для достижения управляемой генерации высокоамплитудных спиновых волн. Частота этих волн фиксирована и определяется как собственными свойствами магнитного бризера, так и частотой приложенного поля.

Работа выполнена в рамках государственного задания, соглашение № 075-03-2024-123/1 от 15.02.2024, тема № 324-21.

- [1] М.А. Шамсутдинов, И.Ю. Ломакина, В.Н. Назаров, А.Т. Харисов, Д.М. Шамсутдинов. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. Наука, М. (2009). 456 с;
- [2] Екомасов, Е. Г., Назаров, В. Н., Самсонов, К. Ю., Муртазин, Р. Р. (2021). Возможность управления динамикой и структурой магнитного солитона в трехслойной ферромагнитной структуре. Письма в ЖТФ, 47(10). 2021, С. 15-18. DOI: 10.21883/PJTF.2021.10.50966.18718

Нелинейная динамика вектора намагниченности в ферромагнитных плёнках с ориентацией [111] при магнитном и акустическом возбуждении

 Γ <u>Голов А.В.</u> ¹, Котов Л.Н. ¹, Абрамовский И.Е. ¹, Щеглов В.И. ² Сыктывкарский государственный университет, Сыктывкар, Россия e-mail: antongolov@mail.ru

² Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия

Нелинейная динамика намагниченности тонких плёнок со сложной магнитной структурой в последнее время активно изучается благодаря быстрому росту вычислительной мощности персональных компьютеров, что позволяет не только проектировать энергоэффективные, компактные и быстродействующие устройства магнитной записи и хранения данных [1, 2], но и моделировать такие сложные нелинейные режимы прецессии намагниченности как бифуркации, сложные пространственные аттракторы и хаос [3].

В данной работе мы численно решаем задачу перемагничивания тонкой ферромагнитной никелевой плёнки c перпендикулярной кристаллографической оси [111] к плоскости плёнки. В микромагнитных расчётах использовалось уравнение магнитной динамики с релаксационным членом в форме Ландау-Лифшица, которое решалось методом Рунге-Кутта 4-го порядка точности. В работе учитываются как распределение магнитокристаллической анизотропии, задающей шесть равнозначных локальных минимумов для устойчивой фиксации вектора намагниченности в них, так и энергии диполь-дипольного взаимодействия, записанной через тензор размагничивающих факторов, приводящей вырождению нескольких минимумов, и ещё сильнее нарушая симметрию задачи при такой ориентации, как [111]. Для облегчения переключения намагниченности и уменьшения величины внешнего воздействия, никелевая плёнка помещается в постоянное магнитное поле, направленное вдоль оси Z. Переориентация намагниченности плёнки осуществляется или переменным акустическим воздействием, или переменным магнитным полем. В обоих случаях в зависимости от амплитуды воздействия наблюдаются явления бифуркаций и динамического хаоса, как при выборе одной из нескольких возможных устойчивых траекторий движения намагниченности, так и в скорости перехода к этой устойчивой траектории. В работе представлены диаграммы переориентации, временные зависимости и фазовые портреты динамики намагниченности плёнки в зависимости от параметров возбуждения.

Исследования выполнены за счёт гранта Российского научного фонда, проект № 25-72-20063.

- [1] V.S. Vlasov, A.V. Golov, L.N. Kotov, V.I. Shcheglov, A.M. Lomonosov and V.V. Temnov, Acoustical Physics **68** (1), 18-47 (2022).
- [2] S. Bandyopadhyay, J. Atulasimha, A. Barman, Appl. Phys. Rev. **8** (4), 041323 (2021).
- [3] А.М. Шутый, Т.М. Василевская, Д.И. Семенцов, С.В. Елисеева, ФТТ **65** (6), 1047–1053 (2023).

Особенности влияния температуры на электрофизические параметры нанокомпозитов на основе эластомеров с металлизированными углеродными нанотрубками

<u>Бабаев А.А.</u>¹, Щегольков А.В.²

¹ Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: babaev-arif@mail.ru

² Тамбовский Государственный Технический Университет, Тамбов, Россия e-mail: Energynano@yandex.ru

Полимерные (ΠK) используемые композиты В качестве функциональных материалов имеют широкий диапазон электро- и теплофизических свойств благодаря большому выбору полимерных матриц и различных проводящих добавок [1,2]. Использование ПК позволяет сочетать эластичность полимерной основы с высокой электропроводностью дисперсных проводящих структур, что находит применение в различных областях, включая гибкую электронику, датчики, электромагнитное экранирование антистатические покрытия, также системы электронагрева.

Содержание дисперсного наполнителя в ПК определяет его функциональные свойства и в том числе возможность получения эффекта саморегулирования температуры [3,4]. ПК с адаптивным нагревом изменяемой электрической мощностью в зависимости от условий окружающей среды и относятся к «умным» или интеллектуальным материалам [5]. Эффект саморегулирования температуры реализуется в счет положительного температурного основном коэффициента сопротивления (ПТКС). ПТКС приводит к тому, что сопротивление может резко увеличиваться с повышением температуры, демонстрируя обратную связь электрического сопротивления и внешней среды, что обычно соответствует фазовому переходу матрицы полимера (температура плавления или температуры стеклования). Коммерческие полимеры с ПТКС как правило, состоят из полимера и наполнителя, например полиэтилена высокой плотности (ПВП) и технического углерода (ТУ). Композит (ТУ/ПВП) широко используется благодаря своей низкой стоимости эксплуатационным характеристикам [6].

Введение углеродных нанотрубок (МУНТ) в полимерные матрицы эластомеров открывает новые перспективы для создания композитов (нанокомпозитов) с улучшенными электрофизическими свойствами, которые могут обладать различными функциональными свойствами.

Сверхнизкий порог перколяции (около 0,01 мас.%) (ПС/ПУ-МУНТ) в композите полистирол/полиуретан с МУНТ и высокая электропроводность достигаются благодаря проводящим сетям МУНТ во взаимосвязанной «островной цепи» ПУ [7].

Композит (силиконовая резина/ парафин/ графит/ УНТ) с удельным сопротивлением 400 Ом \cdot см в области низких температур может выдерживать экстремальные температуры в диапазоне от -20 °C до +120 °C [8].

Улучшение свойств МУНТ может быть достигнуто за счет технологии металлизации углеродных нанотрубок (УНТ). Нанесение металлических наночастиц (например, никеля, меди, серебра или железа) на поверхность УНТ приводит к увеличению проводимости и снижению сопротивления между отдельными нанотрубками. Это, в свою очередь, способствует формированию проводящей сетки в полимерной матрице при меньших концентрациях наполнителя, что положительно сказывается механических свойствах эластомера. Металлизация УНТ, в частности нанесение тонких слоев меди или никеля, значительно повышает их теплопроводность. Это позволяет создавать нанокомпозиты с более эффективным преобразованием электрической энергии в тепловую, что критически важно для применений в области электронагрева.

Исследования показывают, что электропроводность эластомерных композитов с МУНТ зависит от множества факторов, включая тип и концентрацию металла, метод металлизации, тип полимерной матрицы и условия диспергирования наполнителя. Оптимизация этих параметров позволяет достигать высоких значений электропроводности при сохранении эластичности материала.

Выбор эластомерной матрицы обусловлен её способностью к обратимой деформации, что обеспечивает гибкость и долговечность нанокомпозитного материала. Различные типы эластомеров, такие как силиконовые каучуки или полиуретаны, могут быть использованы в зависимости от требуемых характеристик конечного продукта.

Исследование электрических параметров композита в камере тепла/холода

Для получения полимерных композитов для нагревателей используются МУНТ, полученные с помощью СВЧ (сверх высокой частоты) синтеза [9].

С целью создания температурных условий для исследования ПК, использовалась теплоизолированная камера тепла/холода с объемом 0,01 м3 и охлаждением жидким азотом, подогревателями на основе электрических ТЭНов, мощностью 1 кВт. Темп нагрева и охлаждения камеры тепла/холода осуществлялся в диапазоне от 0,5 до 3 °С/мин.

Эффект саморегулирования температуры композита с УНТ определялся путем измерения силы тока I в зависимости от температуры окружающей среды Т. Поскольку кривые I — Т коррелируют с изменением заряда в микроструктуре кремнийорганического эластомера, образованной проводящей сетью УНТ.

Ключевым свойств аспектом улучшения функциональных наномодифицированных достижение эффекта композитов является саморегулирования При температуры. повышении температуры сопротивление нанокомпозита увеличивается, что приводит к снижению тока (рис. 1) и, как следствие, к стабилизации температуры.

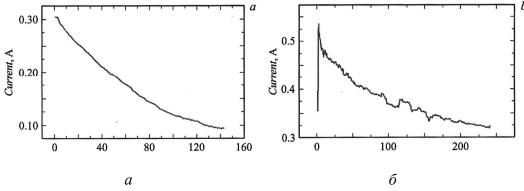


Рис.1 Режимы работы нанокомпозита при напряжении 6 и 10 В.

На рисунке 2 показано изменение потребляемого электрического тока в зависимости от изменении температуры в камере в диапазоне от минус 60 ± 60 °C (при напряжении 36 B).

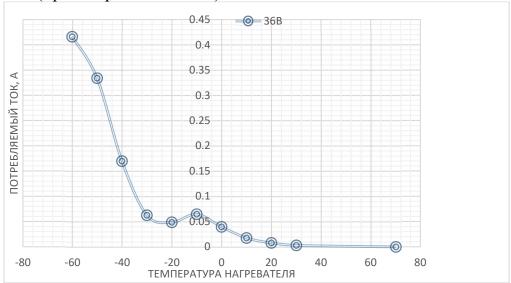


Рис.2 Зависимость потребляемого электрического тока нанокомпозита от изменении температурных условий

При напряжении 36 В происходит стабилизация режима электронагрева по мощности, которая позволяет без снижения температуры композита, обеспечить необходимое значение тепловыделений (с саморегулированием температуры).

Эластомеры с металлизированными углеродными нанотрубками представляют собой перспективные нанокомпозиты для широкого спектра применений. Дальнейшие исследования, направленные на оптимизацию методов синтеза МУНТ и разработку новых композиционных составов, позволят в полной мере реализовать их потенциал.

Исследование выполнено за счет гранта Российского научного фонда № 24-29-00855 (https://rscf.ru/project/2429-008550).

- [1] N. J.Y. Liew, M. F.B. Suhaimi, D. Ju, H. Lee, Appl. Thermal Eng. 256, 124087 (2024)
- [2] M. O.Faruk, A. Ahmed, M. A.Jalil, M. T. Islam, A.M. Shamim, B. Adak, M. M. Hossain, S.Mukhopadhyay, Appl. Mater. Today, 23, 101025 (2021)
- [3] J.-W. Zha, D.H. Wu, Y. Yang, Y.H. Wu, R. K. Y. Li. & Dang, Z.-M. RSC Advan. 7(19), 11338–11344 (2017)
- [4] M., Zhang, C., Wang, X., Liang, Z., in, K., Xia, H. Wang, Y. Zhang, Adv. Electron. Mater., 3(9), 1700193 (2017)
- [5] Y. Li, Z. Zhang, X. Li, J. Zhang, H. Lou, X. Shi, H. Peng, J. of Mater. Chem. 5(1), 41–46 (2017)
- [6] E.-S. Park, Macromolecular Mater. and Eng., 291(6) (2006)
- [7] F.Lai, L.Zhao, J. Zou, P. Zhang. Reactive and Funct. Polym. 151, 104562 (2020)
- [8] J.-M. Hao, Y.-F. Yang, Y.-T. Shen, R. Zhou, W. Zhang, H. Chen, W.-L.Cheng. Chem. Eng. J., 493, 152427 (2024)
- [9] A.V. Shchegolkov, A.V. Shchegolkov, M.A. Chumak, et al. Inorg. Mater. Appl. Res. 15, 1499–1507 (2024)

Плазменный реактор для прецизионных аддитивных технологий на основе протяженного полого катода

Ашурбеков Н.А.¹, Иминов К.О¹., Закарьяева М.З.^{1,2}, Муртазаева А.А.^{1,2}, Рабаданов К.М.^{1,3}, Шахсинов Г.Ш.¹, Хизриев Х.Ш.^{1,2}

¹Дагестанский Государственный Университет, Махачкала, Россия е-таіl: nashurb@mail.ru

²Институт физики ДФИЦ РАН, Махачкала, Россия

³Харбинский Политехнический Университет, Харбин, Китай

Плазменные технологии занимают ключевое положение среди научных направлений, передовых широко применяемых В микроэлектронной промышленности. Переход otдвумерного К трехмерному конструированию элементов микро- и наноэлектроники требует поиска новых методов и технологий, позволяющих проводить наращивание и травление аддитивных сверхтонких покрытий материала на атомарных слоев. Перспективными отдельных прецизионного направлении являются технологии контролируемого атомно-слоевого травления (АСТ) поверхности материалов. Разработка эффективных и надежных плазменных реакторов для реализации указанных технологических операций представляет собой одну из наиболее важных современных исследовательских задач [1].

В настоящем докладе сообщается о разработке и тестировании плазменного реактора реализации плазма-стимулированного ДЛЯ контролируемого технологического цикла процессов атомно-слоевого травления сверхтонких материалов электронной слоев Разработанный нами плазменный реактор основан на использовании широкоапертурных потоков низкоэнергетичных ионов, формируемых наносекундного помощью импульсно-периодического разряда протяженным полым катодом [2-4].

Общая блок-схема плазменного реактора приведена на рисунке 1. Для получения пучковой плазмы разработан источник ленточных электронных пучков на основе импульсно-периодического разряда наносекундной длительности с протяженным полым катодом. Катод представляет собой цилиндрический стержень из нержавеющей стали длиной 25 мм и диаметром 12 мм, вдоль которой прорезана прямоугольная полость (щель) шириной 3 мм, глубиной 6 мм. Сеточный анод из нихрома удален от катода на расстояние 6 мм. Размер элементарной ячейки сетки составляет величину 25×25 мкм, толщина проволоки 25 мкм, геометрическая прозрачность примерно 70%.

Формируемый плазменным источником электронный пучок вытягивается ускоряющим напряжением на электроде, расположенном на расстоянии 1 мм от сетки. Электрод представляет собой плоскую пластину из нержавеющей стали с эмиссионным окном прямоугольного поперечного

сечения 3×25 мм. В качестве диэлектрика использовалась вакуумная керамика. Далее электронный пучок транспортируется на расстояние 15 мм в сторону коллектора, в результате чего формируется «плазменный лист» площадью 15×25 мм², выступающий в роли широкоапертурного эмиттера потоков низкоэнергетичных ионов на поверхность подложки. Плазменный источник ионных потоков подсоединялся к плазменному реактору через стандартный вакуумный фланец CF2,75, с использованием высоковольтных вакуумных электрических вводов.

Разработанный нами плазменный реактор позволяет формировать технологический цикл, состоящий ИЗ этапов модификации поверхности подложки c помощью подобранного специально прекурсора, прокачка реактора аргоном, бомбардировка предварительно модифицированной поверхности подложки широкоапертуным потоком ионов аргона регулируемой энергией ионов до 50 эВ, и продувка и откачка продуктов травления поверхности материала. Плазменный имеет реактор возможность предварительной откачки до остаточных давлений газа10-7 Торр и контроль

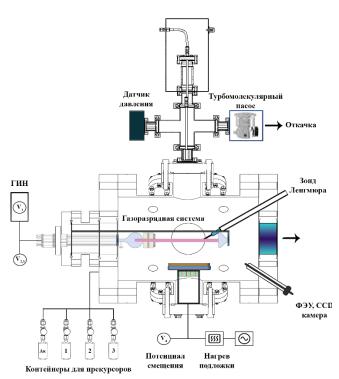


Рис. 1 Общая блок-схема плазменного реактора для прецизионных аддитивных технологий.

состава остаточных газов в реакторе с помощью квадрупольного масс-спектрометра. Кроме того, в плазменном реакторе предусмотрены подача потенциала смещения на подложку и нагрев подлодки до 400 К.

В докладе рассмотрены результаты первого этапа тестирования плазменного реактора в разряде в спектрально чистом аргоне. Исследованы электрокинетические характеристики процесса формирования «плазменного листа» с помощью импульсно-периодического разряда с щелевым катодом в аргоне в диапазоне давлений газа 0.1-0.5 Торр при амплитудах импульсов напряжения до 1.5 кВ.

На рисунке 2 приведены характерные осциллограммы импульсов тока и напряжения между полым катодом и сетчатым анодом при частоте повторения импульсов напряжения 150 Гц. На основе большого объема результатов воспроизводимых экспериментальных исследований выполнены оценки энергии ленточного электронного пучка, генерируемого

в плазменном реакторе, доля пучковых электронов общей плотности электронов Эксразряда. периментально исследованы однородности зависимости «плазменного листа» электрокинетических характеристик полого катода, давления аргона И OT потенциала величины Рассмотрено коллекторе. величины влияние потенциала смещения на пространственные характеристики «плазменного выступающего листа», роли эмиттера ионных потоков.

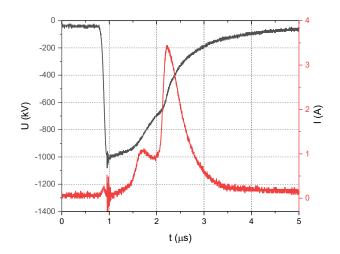


Рис.2 Осциллограммы тока и напряжения на полом катоде плазменного реактора при давлении аргона 0.3 Торр.

Построена кинетическая модель плазменного источника ионных потоков аргона в рассматриваемой нами геометрии плазменного реактора для условий его тестирования по диапазонам давления газа и амплитуд импульсов напряжения..

На втором этапе тестирования плазменного реактора планируется исследование характеристик источника ионных потоков в смеси аргона с ${\rm SF}_6.$

Работа выполнена при частичной финансовой поддержке проекта Государственного задания № FZNZ-2025-0003.

- [1] Gottlieb S. Oehrlein, Stephan M. Brandstadter, Robert L. Bruce et al. J. Vac. Sci. Technol. **42**, 041501 (2024).
- [2] N.A. Ashurbekov, K.O. Iminov, K. M. Rabadanov, G.Sh. Shakhsinov et al. Plasma Science and Technology. **25**, 035405 (2023).
- [3] N. A. Ashurbekov, M. Z. Zakaryaeva, K.O. Iminov et al. Phys Plasmas, . 29, 123905 (2022).
- [4] N.A. Ashurbekov, K.O. Iminov Generation of high-energy electrons in the nanosecond gas discharges with a hollow cathode. Generation of Runaway Electron Beams and X-Rays in High Pressure Gases vol 1, ed V F Tarasenko.

 New York: Nova Publishers (2016)

Когерентные процессы взаимодействия коротких полихроматических лазерных импульсов с неоднородной импульсной плазмой в неоне

Ашурбеков Н.А.¹, <u>Курбангаджиева М.Б.</u>²., Муртазаева А.А.^{1,2}, Шахсинов Γ .Ш.¹, Чехонин И.А.³

¹Дагестанский Государственный Университет, Махачкала, Россия e-mail: nashurb@mail.ru ²Институт физики ДФИЦ РАН, Махачкала, Россия ³Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

В настоящее время активно развиваются исследования квантовооптических явлений, связанных c взаимодействием коротких лазерного ансамблем полихроматических импульсов излучения поглощающих свет атомов, когда ширина спектра лазерного излучения превышает однородную И неоднородную значительно спектральных линий поглощения, см., например, [1,2]. Такие исследования лежат в основе быстро развивающегося научного направления, связанного разработкой методов сверхбыстрой обработки широкополосных оптических сигналов. В ранее выполненных нами работах экспериментально было установлено, что при взаимодействии коротких полихроматических импульсов лазера на красителе с неоднородной импульсной плазмой в неоне наблюдается асимметрия оптических спектров пропускания вблизи спектральной линии атомов неона с длиной волны 650.65 нм. Такая асимметрия спектров пропускания наблюдалась, как при наличии цилиндрической симметрии плазменного столба [3], так и при отсутствии такой симметрии, например, в неоднородной наносекундного разряда в неоне с щелевым катодом [4].

На рисунке 1 приведен характерный когерентный спектр пропускания неоднородного цилиндрического плазменного столба в неоне длиной 50 см, когда зондирующий плазму короткий импульс лазера на красителе имел фокусирующий волновой фронт с фокусным расстоянием около 5 м. Из этого рисунка видно, что в данном случае на длинноволновом крыле спектральной линии атомов неона с длиной волны 650.65 нм наблюдается усиление света с одновременным ослаблением света на коротковолновом крыле.

В настоящем докладе обсуждаются механизмы асимметрии когерентных оптических спектров пропускания импульсной плазмы в неоне вблизи узких спектральных линий поглощения атомов неона. Рассмотрены механизмы усиления света на крыле спектральной линии атомов неона с длиной волны 650.65 нм в условиях отсутствия инверсной населенности. Показано, что в условиях исследования данной работы нелинейные эффекты взаимодействия лазерного излучения с плазмой не играют существенной роли из-за небольшой мощности лазерного излучения.

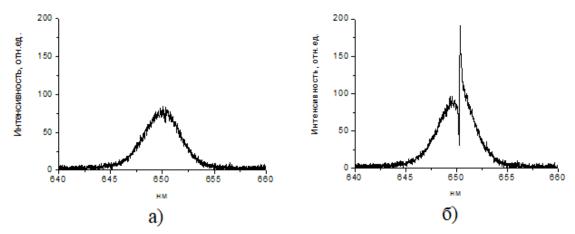


Рис.1. Характерный вид когерентного оптического спектра пропускания неоднородной плазмы в неоне вблизи спектральной линии атомов неона с длиной волны 650.65 нм: а) спектра импульса лазера на красителе на входе в плазму; б) спектра импульса лазера на красителе на выходе из плазменного столба длиной 50 см.

Механизм асимметрии оптических спектров пропускания плазмы в неоне объясняется эффектами когерентного взаимодействия коротких импульсов излучения ансамблем полихроматических лазерного поглощающих атомов неона. Усиление света на длинноволновом крыле спектрального перехода объясняется конструктивной интерференцией поля когерентной поляризации среды и зондирующего лазерного излучения. Анализируется роль профиля поверхности волнового фронта зондирующего лазерного излучения в формировании когерентного оптического спектра пропускания плазмы в неоне.

- [1] S.N.Bagayev, V.S.Egorov, I. B. Mekhov, P.V.Moroshkin, I.A.Chekhonin, E.M. Davliatchine, E. Kindel. Physical Review A A tomic, Molecular, and Optical Physics, **68**, 043812-1 043812-10 (2003).
- [2] S.N. Bagaev, I.B. Mekhov, I.A. Chekhonin, M.A. Chekhonin. Journal of Optical Technology, 90, 227-230 (2023)
- [3] N.A. Ashurbekov, M.B. Kurbangadzhieva, K.O. Iminov, G.Sh. Shakhsinov and K.M. Rabadanov // Journal of Applied Spectroscopy **89**, 1072 (2022).
- [3] N.A. Ashurbekov, K.O. Iminov, G.Sh. Shakhsinov, M.B. Kurbangadzhieva, K.M. Rabadanov // Proceedings SPIE. **V12086**, 1208617 (2021).

Экспериментальное исследование антибактерицидных свойств холодной плазмы атмосферного давления в смеси воздуха с аргоном

Ашурбеков Н.А.¹, Гираев К.М.¹, <u>Муртазаева А.А.</u>^{1,2}, Шахсинов Г.Ш.¹, Оцомиев Г.М.¹

¹Дагестанский Государственный Университет, Махачкала, Россия e-mail: nashurb@mail.ru

²Институт физики ДФИЦ РАН, Махачкала, Россия e-mail: masiyat2010@yandex.ru

Низкотемпературная плазма (НТП), в частности холодная атмосферная плазма, представляет собой инновационную технологию, обладающую уникальным потенциалом для биомедицинских приложений [см., например, 1-4]. Благодаря своей способности генерировать реактивные формы кислорода и азота при температурах, близких к комнатной, НТП безопасна для взаимодействия с живыми тканями и демонстрирует широкий спектр терапевтических эффектов.

В настоящем докладе сообщается о результатах экспериментального исследования антибактерицидного воздействия плазменной струи атмосферного давления в смеси воздуха с аргоном в зависимости от скорости истечения плазмы.

В данной работе для создания низкотемпературно плазменной струи использован капиллярный разряд в цилиндрическом плазменном волноводе, через разрядный промежуток которого прокачивается аргон в присутствии воздуха атмосферного давления. В зависимости от скорости прокачки инертного газа можно регулировать процентное содержание аргона в воздухе.

Разрядная трубка представляла собой кварцевую трубку с двумя электродами. Кварцевая разрядная трубка имела внешний диаметр 7 мм и внутренний 1 мм. Один из электродов представлял собою металлический стержень диаметром 0,5 мм находящийся внутри кварцевой трубки, и на расстоянии 60 мм от него снаружи кварцевой трубки установлен второй электрод, представляющий собой заземленное металлическое кольцо шириною 10 мм и диаметром, совпадающим с внешним диаметром кварцевой трубки. На разрядную трубку подавались импульсы напряжения амплитудой до 12 кВ с частотой повторения до 100 Гц, что обеспечивало стабильность разряда вследствие предионизации разрядного промежутка остаточным зарядом от предыдущих импульсов напряжения.

Выполнены экспериментальные исследования длины плазменной струи, ее пространственной структуры, спектра оптического излучения на различных расстояниях от выхода плазмы из разрядной трубки в зависимости от скорости истечения газа и амплитуды импульсов напряжения.

На рисунке 1 приведен спектр излучения плазменной струи для двух напряжений на электродах, измеренный на расстоянии 2 мм от выхода трубки.

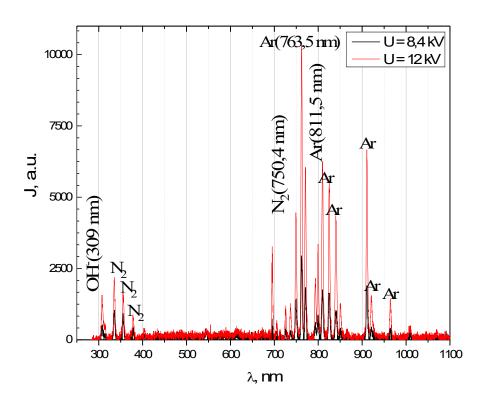


Рис. 1. Спектральное распределение интенсивности излучения плазменной струи, измеренное ортогонально потоку газа на расстоянии от 2 мм от при скорости расхода Ar 0.8 slm.

Исследования показали, что структура оптического спектра излучения, а значит и состав активных частиц плазмы, зависит от расстояния от выхода разрядной трубки и скорости истечения газа.

Отдельно были выполнены исследования воздействия холодной плазменной струи на биопробы, полученные у пациентов с гнойновоспалительными заболеваниями мягких тканей совместно с специалистами ДГМУ. Показано, что после обработки плазмой *proteus vulgaris* бактерии III ст. роста переходят из устойчивой к антибиотикам формы к промежуточной форме, что позволяет сочетать лечение антибиотиками обработкой плазмой.

В докладе обсуждаются оптимальные, с точки зрения антибактерицидного воздействия, условия облучения биопроб плазменной струей.

- [1] F. Behzad, et al., Journal of Physics D: Applied Physics. 53, 123001 (2020).
- [2] Natalia Yu. Babaeval and George V. Naidis. Trends in Biotechnology. **36**, 603 (2017)
- [3] К.М. Гираев, Н.А. Ашурбеков, Э.Х. Исрапов и др. Оптика и спектроскопия. **130**, 792 (2022)
- [4] N. A. Ashurbekov, K. M. Giraev, G. Sh. Shakhsinov, et.al. Journal of Physics. Conference Series. **1697** (2020).

Воздействие высокоэнтальпийной плазмы на армированный реакционно-спечённый карбид кремния

Гаджимагомедов С.Х.¹, Гаджиев М.Х.², Палчаев Д.К.¹, <u>Курбанисмаилов В.С.</u>¹, Рагимханов Г.Б.¹, Багаматов Г.З.²

¹Дагестанский Государственный Университет, Махачкала, Россия е-mail: gb-r@mail.ru

²Объединенный институт высоких температур РАН, Москва, Россия е-mail: makhach@mail.ru

Карбид кремния остаётся одной из ключевых керамических материалов для узлов, эксплуатируемых при температурах >1000 °C в газотурбинных, аэрокосмических и энергетических установках. Высокая твёрдость (25–30 ГПа), коррозионная устойчивость и, относительно, низкая плотность (3,1 г см⁻³) делают SiC востребованным материалом для лопаток, сопловых вставок и защитных покрытий элементов тепловых обменников. Однако даже у реакционно-спечённого армированного SiC-композита вопросы упрочнения поверхностного слоя остаются не решенным: под действием аэродинамической эрозии, циклических тепловых нагрузок и трения деградирует материал быстрее на поверхности, чем в объёме, что ограничивает срок службы изделий.

Плазменная обработка с использованием высокоэнтальпийных потоков $(5-15~{\rm kBt},~5-10\cdot10^3~{\rm K})$ рассматривается как перспективный метод «холодного» (τ <10 с) поверхностного упрочнения. В отличие от классических методов (например, CVD/PVD), плазма способна одновременно изменять фазовый состав и микрорельеф поверхности. Задача данной работы – определить, как выбор плазмообразующего газа (Ar либо N_2) влияет на структуру, микротвёрдость и электропроводность армированного реакционно-спечённого SiC.

Использовались пластинки ($20 \times 20 \times 4$ мм) реакционно-спечённого SiC, полученные шликерным литьём с последующим горячим прессованием (при 30 МПа, 2100 °C, за 1 ч). Полученные образцы состояли из матрицы — α -SiC (\geq 98 %), армирующей фазы — остаточного Si (<0,3 %) и кристаллов β -SiC, возникающих при охлаждении. Для снижения температуры спекания добавлялись Al_2O_3 и BeO (по 0,3 мас%). Пористость керамик не превышала 1,5 %.

Для воздействия потоком плазмы на образцы использовался стабилизированный дуговой плазмотрон с водоохлаждаемым медным анодом и расходящейся сопловой частью, создающий поток диаметром 10 мм на расстоянии 50 мм от среза сопла. Плазмообразующими газами были аргон или азот (99,995 %), массовый расход их составлял 1-3 г с $^{-1}$. Мощность дуги 5-15 кВт регулировалось током 150-300 А при напряжении 35-50 В. Продолжительность облучения каждой точки образца не превышала 5 с, суммарное теплоподводящее воздействие -5-10 кДж г $^{-1}$.

Температура и энтальпия потока определялись калориметрическим методом. Эмиссионные спектры плазмы регистрировались оптоволоконным спектрометром AvaSpec-3648 (220–1100 нм, $\Delta\lambda \approx 0.3$ нм).

Микроструктура до и после обработки исследовалась на сканирующем электронном микроскопе ASPEX EXpress с EDX-детектором (точность содержания основных элементов $\pm 0,1$ ат.%). Микротвёрдость измерялась по Виккерсу (твердомер DuraScan 20) при нагрузке 1 Н (необработанные) и 3 Н (модифицированные). Удельное сопротивление ρ и поверхностное сопротивление R_s измерялись четырёхзондовым зондовым методом (на базе прибора Keithley 2634B с зондовой головкой Signatone HR4-50180TRY).

Проведены серии измерений структуры и свойств поверхностного слоя керамики до и после плазменной обработки. До обработки наблюдалась плотная поликристаллическая структура с размытыми границами зёрен с незначительным количеством фаз, содержащих Al и O. После аргоновой плазмы поверхность приобрела характерный «оплавленный» рельеф с шероховатостью < 1 µм. Согласно измерениям EDX обнаружено увеличение доли кислорода до 80–82 ат.% и существенно снижение содержания углерода. При этом, азотная плазма, напротив, привела к появлению мелкопористых (поры 0,2–0,5 µм) зон на поверхности. В локальных областях фиксировалось повышенное содержание Fe и Ni (до 10–11 ат.%), образованные вследствие распыления частиц материала электрода и последующего их внедрения в разогретую поверхность образца.

Исходная микротвёрдость керамики до воздействия составила (870 ± 25) HV₃, что согласуется с данными для плотного образца SiC. Аргоновый режим обработки привел к повышению микротвёрдости до $(1880 \pm 90) \, \text{HV}_1$, то есть более чем в 2 раза при пересчёте на эквивалентную нагрузку. Возникшее упрочнение обусловлено, возможно, связано: образованием поверхностного оксидного слоя с высокой микротвёрдостью и релаксацией термических напряжений вследствие кратковременного плавления/затвердевания При обработке азотной зерен. микротвёрдость керамики снижалась до (680 ± 40) HV₁. Такое снижение, возможно, связано с увеличением доли трещин, преимущественно по межзеренным границам, после воздействия.

В ходе оптимизации режимов воздействия установлено, что повышение энтальпии >12 кДж г $^{-1}$ ведёт к значительному оплавлению и возникновению макротрещин независимо от рабочего газа. При энтальпии

<5 кДж г $^{-1}$ существенных структурных изменений поверхности не наблюдаются. Следовательно, оптимальное значение составляет 5-10 кДж г $^{-1}$ при Ar (T_p плазмы $\approx 5-7$ кК, $\tau \le 5$ с), обеспечивающее наибольший прирост твердости поверхности, сохраняя структуру и свойства в объеме. Для воздействия N_2 -плазмой оптимальные значения составляют 5 кДж г $^{-1}$ и $\tau \approx 3$ с.

Заключение

Обработка армированного реакционно-спечённого SiC высокоэнтальпийными плазменными потоками обладает значительным потенциалом для направленного упрочнения поверхности. Аргоновая плазма, создавая тонкую аморфную SiO₂-плёнку, повышает микротвёрдость более чем вдвое без изменения проводимости. Азотная плазма, приводит к повышению пористости и разупрочнению, повышая шероховатость поверхности. Установлен оптимальный режим воздействия плазменным потоком в среде аргона $(5-10 \text{ кДж г}^{-1}, \tau \leq 5 \text{ c})$, обеспечивающий изменения поверхности, востребованные на практике.

В случае возникновения каких-либо вопросов Вы также можете обратиться по указанному адресу.

- [1] М.Х. Гаджиев, С.Х. Гаджимагомедов, Н.А. Демиров, Г.Б. Рагимханов, В.С. Курбанисмаилов, Д.К. Палчаев, Ж.Х. Мурлиева, Письма ЖТФ 43, 26 (2017).
- [2] J. Harris et al., J. Eur. Ceram. Soc. 44, 123 (2024).
- [3] S.Y. Lee, K.T. Park, Surf. Coat. Technol. 458, 129387 (2023).

АВТОРСКИЙ СПИСОК

A	I	Абрамовский И.Е.	240, 269
Agalarov M.A.	215	Акманова Г.Р	197, 201
Aghaliyeva S.T.	259	Алибеков А.Г.	185, 189
В		Аливердиев А.А.	238
Bendre S.T.	75	Алиев А.М.	85, 94, 98,
C	75		137, 140
Chaudhari Y.A.	75	Алиев Р.М.	238
G	73	Амиров А.А.	75, 99, 141,
Gadzhimirzaev R.M.	215	1	163
	213	Амиров А.М.	152
Н.	0.5	Амирова А.А.	238
Hu F.	85	Антонов В.А.	213
L	0.5	Арсланов Т.Р.	72
Li Y.	85	Асваров А.Ш.	251
M	21.5	Асриян А.Н.	150
Magomedov A.M.	215	Атаев М.Б.	152
Mammadov T.S.	259	Атаева Г.Я.	55, 64
Mansouri U.U.	113	Ахмедов А.К.	251
Mirzoev I.N.	117	Ашурбеков Н.А.	274, 277, 279
N		Б	, ,
Nematov G.N.	113	Бабаев А.А.	270
Q		Бабаев А.Б.	55, 64
Qiao K.	137	Бабаев М.А.	55
R		Бабушкин А.Н.	231
Radjabova S.S.	121	Багаматов Г.З.	281
\boldsymbol{S}		Бадиев М.К.	61
Safarov M.M.	113, 117, 121	Бакмаев А.Г.	105
Safarov P.M.	117	Барышникова О.В.	71
Shirinov M.M.	259	Батдалов А.Б.	219
W		Батырова Р.Г.	145, 175
Wang J.	85	Бейбалаев В.Д.	238
\boldsymbol{Z}		Белим С.В.	59
Zoirov H.A.	117	Беляков М.Ю.	145
\boldsymbol{A}		Берсенев А.И.	71
Абакарова Н.С.	261	Биккулова Н.Н.	197, 201
Абдрахманов Д.И.	16	Билалов А.Р.	101
Абдулагатов И.М. 145, 175, 181		Блинова Е.Н.	36
Абдулвагидов Б.Ш. 173		Бучельников В.Д.	6, 9, 40, 79
Абдулвагидов Ш.Б. 173, 185, 189		Быбик М.С.	141
Абдулвахидов Б.К.	105	Бычков И.В.	76, 158, 217,
Абдулвахидов К.Г.	101, 105		232
Абдулкадирова Н.З.	85, 94, 140	$\boldsymbol{\mathit{B}}$	
Абдуллаев Х.Х.	101	Вакшин А.И.	71
Абдуллоев М.А.	109	Варнашев К.Б.	193

Васин М.Г.	23, 156	Загребин М.А.	6
Вахитов Р.М.	220, 222	Закарьяева М.З.	274
Велиханов А.Р.	255	Зарифзода М.А.,	109
Ветошко П.	6	Зейналов Р.З.	235
Волкова Я.Ю.	231	Зотов И.С.	158
Волосников Д.В.	148, 195	И	
Воробьёв Е.В.	133	Ибавов Н.В.	145, 175
Γ		Ибаев Ж.Г.	55
Гаврилюк С.И.	248	Игнатенко А.Н.	19
Гаджиев Г.М.	261	Игошев П.А.	30, 88
Гаджиев М.Х.	281	Игошев П.А.	20,00
Гаджимагомедов С.Х.	167, 258, 281	Ильясова Г.Ф.	222
Гажимагомедов С.Х.	169	Иминов К.О.	274
Галлямов Э.М.	71	Ирхин В.Ю.	19
Гамзатов А.Г.	85, 88, 94,	Исаев И.А.	181
	137, 138, 140	Ихаков М.Э.	169
Гасанов С.Ш.	48	K	
Гафуров М.М	235, 152	Кабанов Д.К.	211, 268
Гираев К.М.	279	Кадиев М.В.	152
Гладилин О.А.	32	Кадырбардеев А.Т.	137, 138
Голов А.В.	240, 269	Казаков Д.Ю.	158
Голов А.В.	,	Калашников В.	6
Головчан А.В.	6, 83	Каленов Д.С.	141
Гордей М.М.	44	Калинин Ю.Е.	226, 244
Грабой И.Э.	138	Каллаев С.Н.	101, 105
фон Гратовски С.В.	6, 90	Каманцев А.П.	6, 94
Григорьев Б.А.	238	Карпухин Д.А	83, 94
Губин А.А.	195	Ковалев Д.Ю.	152
Гудин С.А.	21	Ковалев О.	6
Гуменник К.В.	32	Ковалева А.Ю.	67
Гусейнов М.М.	177	Коледов В.В.	6, 83, 90, 94,
Д			141
Джамалудинов М.Р.	54	Коледов. А.	6
Дильмиева Э.	6	Колюшенков М.А.	163
Дунаевский С.М.	225	Комлев А.С.	141
$oldsymbol{E}$		Комлева Е.В.	19
Екомасов Е.Г.	211, 232,	Коршунов М.М.	14
	266, 268	Космачев О.А.	263
Елистратов А.А.	23, 150, 156	Котов Л.Н.	226, 240,
Ерагер К.Р.	79		244, 248, 269
Ермилов Н.В.	197, 201	Кривенко И.С.	206
Ж		Кубатаев З.Ю.	235
Жданов С.	6	Кугель К.И.	11
3		Кудашев В.С.	211
Заворотнев Ю.Д.	26, 32	Кузнецов Д.	6
Заговорич А.Д.	226	Кузьмин Д.А.	76, 217, 232
- ' '	•		

Кулатов Э.Т.	11	Низамов Т.Р.	163
Курбангаджиева М.Б.	277	Новокрещенов Д.В.	86
Курбангулов А.Р.	201	Нугуманов А.Г.	16
Курбанисмаилов В.С.	281	0	
Курбанов А.З.	72	Омаров З.М.	101, 105
Курбанова Д.Р.	54, 56	Оракова С.М.	181
$J\!\!I$	·	Орлов А.П.	141
Лазоряк Б.И.	71	Оршулевич М.А.	127, 130
Ласёк М.П.	244	Оцомиев Г.М.	279
M		П	
Магомедов А.Р.	47	Палчаев Д.К.	167, 169,
Магомедов М.А.	25, 39, 47,		258, 281
11101 01120, 02 11111 11	48, 51, 54,	Пирмагомедов З.Ш.	185, 189
	56, 61	Поваренцев В.	6, 6
Мазагаева М.К.	51	Поволоцкий И.И.	148, 195
Макеев М.Ю.	67	Пойманов В.	6
Мальцев И.В.	76	Потапская О.Н.	125
Мамонова М.В.	67	Прокунин А.	6
Манцевич В.Н.	206	<i>P</i>	O
Маренкин С.Ф.	173, 185, 189	Рабаданов К.М.	274
Матюнина М.В.	76	Рабаданов К.Ш.	152, 235
Маширов А.	6	Рабаданов М.Х.	169, 258
Мельникова Н.В.	173	Рагимханов Г.Б.	281
Метлов Л.С.	6, 36, 44	Рамазанов М.К.	25, 39, 47,
Митаров Р.Г.	105	т амазанов тил.	51, 56
Михайленко Е.К.	225	Рамазанов М.Р.	54
Морозов Е.В.	6, 83, 94	Рамазанов Р.М.	47
Мурлиев Э.К.	251	Рамазанов Ш.М.	261
Мурлиева Ж.Х.	167, 169, 258	Расулов С.М.	175, 181
Муртазаев А.К.	25, 39, 47,	Ремизов С.В.	23, 156
	48, 51, 54,	Ризванова Т.Р.	39
	55, 56, 61, 64	Риль А.И.	173
Муртазаев К.Ш.	25, 54	C	170
Муртазаева А.А.	274, 277, 279	Савватеева М.В.	238
Мусабиров И.И.	94	Сайпулаева Л.А.	173, 185, 189
Мухучев А.А.	219	Самигуллина А.И.	208
Мынбаев К.Д.	164	Сафаргалиев Д.И.	197
H		Сафаров М.М.	109
Назаревич Д.А.	175	Сафонов Р.А.	125
Назруллозода А.С.	109	Свешникова Д.А.	235
Наймушина Д.Е.	125	Симакова С.С.	59
Наяк Ч.	240	Ситников А.В.	244, 226
Неженцев А.	6	Скрипов П.В.	148, 195
Некрасов И.А.	18	Смирнов Д.С.	206
Непочатых Ю.И.	141	Совтус Н.В.	164
Несоленов А.	6	Соколовская Ю.А.	79
	•	CONONODORANI 10.11.	, ,

Соколовский В.В.	6, 9, 40, 79,	X		
	86	Хакимуллина А.А.	220	
Соколовский Д.Н.	231	Хизриев К.Ш.	213, 229, 274	
Стрельцов С.В.	19	Ховайло А.В.	6, 219	
Суслов Д.	6	Ц	ŕ	
T		Цымбаренко Д.М. [']	162	
Тааев Т.А.	213, 229	$oldsymbol{q}$		
Тарасенко Т.Н.	125	Чехонин И.А.	277	
Таскаев С.В.	6, 94, 127,	Чжао Ч.	138	
	130	Чижов Д.Е.	30	
Тебеньков А.В.	185, 189	Чуракова А.А.,	133	
Темников Ф.В.	19	,		
Терешина И.С.	94	Шандрюк Г.А.	94	
Тихомиров И.В.	59	Шарафуллин И.Ф.	16, 208	
Тогушова Ю.Н.	14	Шахсинов Г.Ш.	274, 277, 279	
Толкачев В.А.	158, 217	Шевелева А.В.	125	
Томашевская Е.Ю.	26	Щ		
Тургунбоев М.Т.	109	Щеглов В.И.	6, 269	
${f y}$		Щегольков А.В.	270	
Успенский Ю.А.	11	9		
Утарбекова М.В.	127, 130	Эмиров Р.М.	169	
Уткин А.А.	226	Эфендиева М.Р.	238	
Ушаков А.В.	19	Эфендиева Т.Н.	261	
Φ		Ю		
Фадеева Е.О.	263	Юлдашева А.Р.	208	
Фазлитдинова А.Г.	158	Юсупов Д.М.	75	
Фасхутдинов Р.А.	211	Я		
Фахретдинов М.И.	266	Якимов М.В.	244	
Филиппов М.А.	220	Ярыгина Е.А.	263	
Фридман Ю.А.	263	2-1920 11110 2011	_ 50	
Фролова Д.А.	9			
		ı		